Normalized defining polynomial
\( x^{20} - x^{19} + 61 x^{18} - 97 x^{17} + 1959 x^{16} - 3824 x^{15} + 42001 x^{14} - 86676 x^{13} + 651922 x^{12} - 1272388 x^{11} + 7455206 x^{10} - 12647278 x^{9} + 61958107 x^{8} - 85243529 x^{7} + 364805340 x^{6} - 374838878 x^{5} + 1487095911 x^{4} - 973042478 x^{3} + 3808215652 x^{2} - 1149290321 x + 4751163121 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(193315443721344440894830801055908203125=5^{15}\cdot 11^{16}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $82.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(715=5\cdot 11\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{715}(1,·)$, $\chi_{715}(196,·)$, $\chi_{715}(456,·)$, $\chi_{715}(521,·)$, $\chi_{715}(586,·)$, $\chi_{715}(12,·)$, $\chi_{715}(14,·)$, $\chi_{715}(207,·)$, $\chi_{715}(144,·)$, $\chi_{715}(339,·)$, $\chi_{715}(532,·)$, $\chi_{715}(597,·)$, $\chi_{715}(599,·)$, $\chi_{715}(664,·)$, $\chi_{715}(38,·)$, $\chi_{715}(103,·)$, $\chi_{715}(168,·)$, $\chi_{715}(298,·)$, $\chi_{715}(493,·)$, $\chi_{715}(467,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{19} a^{15} + \frac{2}{19} a^{14} + \frac{7}{19} a^{13} - \frac{6}{19} a^{12} - \frac{9}{19} a^{11} - \frac{5}{19} a^{10} - \frac{8}{19} a^{9} + \frac{9}{19} a^{8} - \frac{1}{19} a^{7} - \frac{9}{19} a^{6} - \frac{8}{19} a^{5} - \frac{9}{19} a^{3} + \frac{5}{19} a^{2} - \frac{5}{19} a + \frac{4}{19}$, $\frac{1}{19} a^{16} + \frac{3}{19} a^{14} - \frac{1}{19} a^{13} + \frac{3}{19} a^{12} - \frac{6}{19} a^{11} + \frac{2}{19} a^{10} + \frac{6}{19} a^{9} - \frac{7}{19} a^{7} - \frac{9}{19} a^{6} - \frac{3}{19} a^{5} - \frac{9}{19} a^{4} + \frac{4}{19} a^{3} + \frac{4}{19} a^{2} - \frac{5}{19} a - \frac{8}{19}$, $\frac{1}{1691} a^{17} - \frac{42}{1691} a^{16} - \frac{43}{1691} a^{15} + \frac{370}{1691} a^{14} - \frac{524}{1691} a^{13} - \frac{464}{1691} a^{12} + \frac{421}{1691} a^{11} - \frac{8}{89} a^{10} + \frac{135}{1691} a^{9} - \frac{592}{1691} a^{8} + \frac{293}{1691} a^{7} - \frac{503}{1691} a^{6} - \frac{674}{1691} a^{5} + \frac{6}{19} a^{4} - \frac{320}{1691} a^{3} + \frac{34}{1691} a^{2} - \frac{841}{1691} a - \frac{30}{89}$, $\frac{1}{221521} a^{18} - \frac{65}{221521} a^{17} + \frac{2169}{221521} a^{16} - \frac{2913}{221521} a^{15} - \frac{312}{221521} a^{14} + \frac{51460}{221521} a^{13} + \frac{37081}{221521} a^{12} + \frac{14373}{221521} a^{11} - \frac{18174}{221521} a^{10} - \frac{51668}{221521} a^{9} + \frac{41410}{221521} a^{8} + \frac{22128}{221521} a^{7} - \frac{29511}{221521} a^{6} + \frac{4226}{11659} a^{5} + \frac{55661}{221521} a^{4} + \frac{81264}{221521} a^{3} - \frac{61965}{221521} a^{2} - \frac{91231}{221521} a + \frac{3983}{11659}$, $\frac{1}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{19} + \frac{15354946000840923503615014267975087892011171070204381321766089226}{11545817302317106616107430149778630196466048626825895373908234519498901} a^{18} - \frac{30245197562062407743416299783700069814260001374071457350990933503574}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{17} - \frac{3736754340802770620125049244276231931800911406276738246229096992097237}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{16} + \frac{1541380884033942254751361271525643603531331349330277760510740054828987}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{15} + \frac{90577592796558478465485817319676254407700038576946747168114564311948405}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{14} + \frac{92552595250621035282091393558523057281907690877071730466538518490241148}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{13} - \frac{80121101368106371768891297939699119214169680440564834314235107437206379}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{12} + \frac{85203900152034446348007774593387757300354429678094111354976871214845374}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{11} - \frac{34842325884765264905273566012966581354323325970541170653017386454385967}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{10} - \frac{83971622104989613259482479761780361969344832048144548541875554757312941}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{9} + \frac{45010992567885122745736497195548274293995161660435400211212752356186188}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{8} + \frac{83915118188492809552556138330365938985064902425208058384898869944076906}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{7} - \frac{74039142280254043239903746641326348057940304940544157939734826562202526}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{6} + \frac{49061248426894181798323818895840903370828254187391312130383478684811267}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{5} + \frac{64426160859921893901009896921511615180913736685290977305063707492615395}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{4} - \frac{3294746237975463310957352344442142993977142859399021782079764382000306}{11545817302317106616107430149778630196466048626825895373908234519498901} a^{3} - \frac{67532261098369811359360765498967862603664562329316283550571819159502875}{219370528744025025706041172845793973732854923909692012104256455870479119} a^{2} + \frac{60243094183889085850988726766255048787354674482225322085034485739399092}{219370528744025025706041172845793973732854923909692012104256455870479119} a - \frac{84566366818552174475948714655731097870893972548706332139515239193452834}{219370528744025025706041172845793973732854923909692012104256455870479119}$
Class group and class number
$C_{331922}$, which has order $331922$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.21125.1, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | $20$ | R | R | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 13 | Data not computed | ||||||