Normalized defining polynomial
\( x^{20} + 32 x^{18} + 424 x^{16} + 3097 x^{14} + 13945 x^{12} + 40764 x^{10} + 78842 x^{8} + 100146 x^{6} + 80304 x^{4} + 36845 x^{2} + 7369 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19280067292868642604792128836993024=2^{20}\cdot 11^{16}\cdot 7369^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 7369$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{23} a^{16} - \frac{1}{23} a^{14} + \frac{10}{23} a^{12} - \frac{6}{23} a^{10} - \frac{10}{23} a^{8} + \frac{7}{23} a^{6} + \frac{5}{23} a^{4} - \frac{1}{23} a^{2} - \frac{6}{23}$, $\frac{1}{23} a^{17} - \frac{1}{23} a^{15} + \frac{10}{23} a^{13} - \frac{6}{23} a^{11} - \frac{10}{23} a^{9} + \frac{7}{23} a^{7} + \frac{5}{23} a^{5} - \frac{1}{23} a^{3} - \frac{6}{23} a$, $\frac{1}{23} a^{18} + \frac{9}{23} a^{14} + \frac{4}{23} a^{12} + \frac{7}{23} a^{10} - \frac{3}{23} a^{8} - \frac{11}{23} a^{6} + \frac{4}{23} a^{4} - \frac{7}{23} a^{2} - \frac{6}{23}$, $\frac{1}{23} a^{19} + \frac{9}{23} a^{15} + \frac{4}{23} a^{13} + \frac{7}{23} a^{11} - \frac{3}{23} a^{9} - \frac{11}{23} a^{7} + \frac{4}{23} a^{5} - \frac{7}{23} a^{3} - \frac{6}{23} a$
Class group and class number
$C_{2}\times C_{1090}$, which has order $2180$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 217834.368488 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5120 |
| The 224 conjugacy class representatives for t20n335 are not computed |
| Character table for t20n335 is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1579610594089.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | $20$ | $20$ | $20$ | $20$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.14 | $x^{10} + 5 x^{8} - 50 x^{6} - 58 x^{4} + 49 x^{2} + 21$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ |
| 2.10.10.14 | $x^{10} + 5 x^{8} - 50 x^{6} - 58 x^{4} + 49 x^{2} + 21$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2, 2]^{5}$ | |
| 11 | Data not computed | ||||||
| 7369 | Data not computed | ||||||