Normalized defining polynomial
\( x^{20} - 5 x^{19} + 17 x^{18} - 38 x^{17} + 72 x^{16} - 123 x^{15} + 186 x^{14} - 257 x^{13} + 310 x^{12} - 319 x^{11} + 273 x^{10} - 295 x^{9} + 216 x^{8} - 111 x^{7} + 124 x^{6} - 15 x^{5} + 72 x^{4} + 30 x^{3} + 25 x^{2} + 5 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(191089745854193889068530761=3^{10}\cdot 61^{4}\cdot 97^{2}\cdot 397^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $20.61$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 61, 97, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} - \frac{1}{13} a^{17} - \frac{3}{13} a^{16} + \frac{5}{13} a^{15} - \frac{3}{13} a^{14} + \frac{6}{13} a^{13} - \frac{2}{13} a^{12} + \frac{3}{13} a^{11} + \frac{3}{13} a^{10} - \frac{4}{13} a^{9} + \frac{1}{13} a^{8} - \frac{6}{13} a^{7} - \frac{6}{13} a^{6} - \frac{1}{13} a^{4} - \frac{6}{13} a^{3} - \frac{1}{13} a^{2} + \frac{5}{13} a - \frac{4}{13}$, $\frac{1}{29919870926736635} a^{19} + \frac{832056392929964}{29919870926736635} a^{18} + \frac{5510023652282918}{29919870926736635} a^{17} - \frac{2268763510051096}{29919870926736635} a^{16} - \frac{5976978775457692}{29919870926736635} a^{15} - \frac{292132114161126}{29919870926736635} a^{14} + \frac{4736658302451082}{29919870926736635} a^{13} + \frac{728555546440442}{2301528532825895} a^{12} + \frac{9865798788375804}{29919870926736635} a^{11} - \frac{3927254424388158}{29919870926736635} a^{10} + \frac{1494128716133061}{29919870926736635} a^{9} + \frac{2230803041979384}{29919870926736635} a^{8} + \frac{14137833083750647}{29919870926736635} a^{7} - \frac{8739441228745418}{29919870926736635} a^{6} + \frac{9144196150353237}{29919870926736635} a^{5} - \frac{6357509607003777}{29919870926736635} a^{4} - \frac{4906083002075421}{29919870926736635} a^{3} + \frac{13291050284898526}{29919870926736635} a^{2} + \frac{3360870223197289}{29919870926736635} a + \frac{10784806387239151}{29919870926736635}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{395026395648133}{2301528532825895} a^{19} - \frac{1966844656854868}{2301528532825895} a^{18} + \frac{6702067012055614}{2301528532825895} a^{17} - \frac{15025823028784033}{2301528532825895} a^{16} + \frac{28672863166768614}{2301528532825895} a^{15} - \frac{49270852787167068}{2301528532825895} a^{14} + \frac{74910926211655671}{2301528532825895} a^{13} - \frac{104207299815215342}{2301528532825895} a^{12} + \frac{126911014793231792}{2301528532825895} a^{11} - \frac{132580934485479324}{2301528532825895} a^{10} + \frac{116501876273284348}{2301528532825895} a^{9} - \frac{126132795684327368}{2301528532825895} a^{8} + \frac{93477622651990126}{2301528532825895} a^{7} - \frac{52782638309758904}{2301528532825895} a^{6} + \frac{57719664718384846}{2301528532825895} a^{5} - \frac{10036236471743576}{2301528532825895} a^{4} + \frac{32025747783963752}{2301528532825895} a^{3} + \frac{7958853620659238}{2301528532825895} a^{2} + \frac{11774037744196157}{2301528532825895} a + \frac{2370930269132673}{2301528532825895} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 137168.028568 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7680 |
| The 72 conjugacy class representatives for t20n368 are not computed |
| Character table for t20n368 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 5.5.24217.1, 10.6.56886919633.1, 10.4.13823521470819.1, 10.0.142510530627.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $61$ | 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.1.1 | $x^{2} - 61$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97 | Data not computed | ||||||
| 397 | Data not computed | ||||||