Normalized defining polynomial
\( x^{20} + 112 x^{18} + 4632 x^{16} + 98910 x^{14} + 1240519 x^{12} + 9656781 x^{10} + 47357655 x^{8} + 143870574 x^{6} + 256786210 x^{4} + 240637070 x^{2} + 90111457 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19059081874757239417955627425241846775808=2^{20}\cdot 61^{9}\cdot 397^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $103.28$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 61, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{61} a^{14} - \frac{10}{61} a^{12} - \frac{4}{61} a^{10} + \frac{29}{61} a^{8} + \frac{23}{61} a^{6} - \frac{7}{61} a^{4}$, $\frac{1}{61} a^{15} - \frac{10}{61} a^{13} - \frac{4}{61} a^{11} + \frac{29}{61} a^{9} + \frac{23}{61} a^{7} - \frac{7}{61} a^{5}$, $\frac{1}{61} a^{16} + \frac{18}{61} a^{12} - \frac{11}{61} a^{10} + \frac{8}{61} a^{8} - \frac{21}{61} a^{6} - \frac{9}{61} a^{4}$, $\frac{1}{61} a^{17} + \frac{18}{61} a^{13} - \frac{11}{61} a^{11} + \frac{8}{61} a^{9} - \frac{21}{61} a^{7} - \frac{9}{61} a^{5}$, $\frac{1}{5234485412913374859815179} a^{18} + \frac{32928006017092079867148}{5234485412913374859815179} a^{16} - \frac{4673898080677992830347}{5234485412913374859815179} a^{14} + \frac{1989878256934042731304687}{5234485412913374859815179} a^{12} + \frac{1563564027325840378590820}{5234485412913374859815179} a^{10} - \frac{716683316740625170175432}{5234485412913374859815179} a^{8} - \frac{22292091604960911606181}{85811236277268440324839} a^{6} - \frac{31777285982686873439651}{85811236277268440324839} a^{4} - \frac{247064927414867433761}{1406741578315876070899} a^{2} + \frac{693528575485612621452}{1406741578315876070899}$, $\frac{1}{5234485412913374859815179} a^{19} + \frac{32928006017092079867148}{5234485412913374859815179} a^{17} - \frac{4673898080677992830347}{5234485412913374859815179} a^{15} + \frac{1989878256934042731304687}{5234485412913374859815179} a^{13} + \frac{1563564027325840378590820}{5234485412913374859815179} a^{11} - \frac{716683316740625170175432}{5234485412913374859815179} a^{9} - \frac{22292091604960911606181}{85811236277268440324839} a^{7} - \frac{31777285982686873439651}{85811236277268440324839} a^{5} - \frac{247064927414867433761}{1406741578315876070899} a^{3} + \frac{693528575485612621452}{1406741578315876070899} a$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{77548}$, which has order $620384$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 780177.561162 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 23 conjugacy class representatives for t20n291 |
| Character table for t20n291 is not computed |
Intermediate fields
| 10.10.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.4 | $x^{10} - 5 x^{8} + 14 x^{6} - 22 x^{4} + 17 x^{2} - 37$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ |
| 2.10.10.5 | $x^{10} - 9 x^{8} + 50 x^{6} - 50 x^{4} + 45 x^{2} - 5$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
| 61 | Data not computed | ||||||
| 397 | Data not computed | ||||||