Normalized defining polynomial
\( x^{20} - 10 x^{19} + 50 x^{18} - 148 x^{17} + 286 x^{16} - 384 x^{15} + 492 x^{14} - 834 x^{13} + 1443 x^{12} - 1702 x^{11} + 1318 x^{10} - 764 x^{9} + 683 x^{8} - 716 x^{7} + 524 x^{6} - 200 x^{5} + 51 x^{4} - 22 x^{3} + 18 x^{2} - 6 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1905147214615868315998879744=2^{30}\cdot 36497^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{114463443183303143601} a^{19} + \frac{2734188190303420429}{12718160353700349289} a^{18} + \frac{21828080506013432915}{114463443183303143601} a^{17} + \frac{36206839419828947164}{114463443183303143601} a^{16} - \frac{4486530849951514303}{114463443183303143601} a^{15} - \frac{27017180764031251924}{114463443183303143601} a^{14} + \frac{17638277062678993034}{114463443183303143601} a^{13} + \frac{4515145946321980634}{16351920454757591943} a^{12} - \frac{2610770565421912585}{114463443183303143601} a^{11} - \frac{12186858477466175288}{114463443183303143601} a^{10} - \frac{14088795702139115002}{114463443183303143601} a^{9} - \frac{2048816288977001767}{12718160353700349289} a^{8} - \frac{27649310718000642949}{114463443183303143601} a^{7} + \frac{543813989220054337}{38154481061101047867} a^{6} + \frac{28824054968984350064}{114463443183303143601} a^{5} + \frac{826719369087152449}{5450640151585863981} a^{4} + \frac{1019483486744676745}{12718160353700349289} a^{3} - \frac{46130480344392649096}{114463443183303143601} a^{2} + \frac{2192180047415925833}{16351920454757591943} a + \frac{7471363563032634413}{114463443183303143601}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{48769350165152192759}{114463443183303143601} a^{19} - \frac{53016340414589783940}{12718160353700349289} a^{18} + \frac{2336096768030825669476}{114463443183303143601} a^{17} - \frac{6719071075727571993550}{114463443183303143601} a^{16} + \frac{12518825248921389213226}{114463443183303143601} a^{15} - \frac{16058611410267439497887}{114463443183303143601} a^{14} + \frac{20520664012837773617125}{114463443183303143601} a^{13} - \frac{5159466533433375040559}{16351920454757591943} a^{12} + \frac{62414470916379720468394}{114463443183303143601} a^{11} - \frac{69481235016185951788972}{114463443183303143601} a^{10} + \frac{49179959767792798651354}{114463443183303143601} a^{9} - \frac{2872888862951043299306}{12718160353700349289} a^{8} + \frac{26416990876292992066135}{114463443183303143601} a^{7} - \frac{9384655571081098358455}{38154481061101047867} a^{6} + \frac{19172793700848781502071}{114463443183303143601} a^{5} - \frac{251376733735181185153}{5450640151585863981} a^{4} + \frac{85552017507786813838}{12718160353700349289} a^{3} - \frac{284955264022828097828}{114463443183303143601} a^{2} + \frac{95060144749867430266}{16351920454757591943} a - \frac{140042719842816329636}{114463443183303143601} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 104792.356058 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3840 |
| The 36 conjugacy class representatives for t20n279 |
| Character table for t20n279 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.36497.1, 10.0.1363999753216.1, 10.10.1363999753216.1, 10.0.1363999753216.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 36497 | Data not computed | ||||||