Normalized defining polynomial
\( x^{20} - 2047 x^{18} + 895458 x^{16} + 491864356 x^{14} - 205994049190 x^{12} - 70140281045427 x^{10} + 8237200478417331 x^{8} + 4647879416771177895 x^{6} + 551837397237621960474 x^{4} + 24788321856472354874337 x^{2} + 364338580053661358017501 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(19031596686524690994504794774570696832010240000000000=2^{20}\cdot 5^{10}\cdot 19^{5}\cdot 349^{5}\cdot 10771^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $411.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 349, 10771$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} + \frac{1}{19} a^{12} + \frac{3}{19} a^{10} + \frac{1}{19} a^{8} + \frac{3}{19} a^{6} + \frac{7}{19} a^{4} + \frac{4}{19} a^{2}$, $\frac{1}{19} a^{15} + \frac{1}{19} a^{13} + \frac{3}{19} a^{11} + \frac{1}{19} a^{9} + \frac{3}{19} a^{7} + \frac{7}{19} a^{5} + \frac{4}{19} a^{3}$, $\frac{1}{71422501} a^{16} - \frac{2047}{71422501} a^{14} + \frac{895458}{71422501} a^{12} - \frac{8093151}{71422501} a^{10} - \frac{11556306}{71422501} a^{8} - \frac{1484520}{3759079} a^{6} + \frac{13206723}{71422501} a^{4} + \frac{24010525}{71422501} a^{2}$, $\frac{1}{71422501} a^{17} - \frac{2047}{71422501} a^{15} + \frac{895458}{71422501} a^{13} - \frac{8093151}{71422501} a^{11} - \frac{11556306}{71422501} a^{9} - \frac{1484520}{3759079} a^{7} + \frac{13206723}{71422501} a^{5} + \frac{24010525}{71422501} a^{3}$, $\frac{1}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{18} + \frac{2280457006980628796055958901655542764184055745382460133759879173900226614119974599606933090}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{16} + \frac{15446174839658103709806715494912205459292457920227960489444060838538606199649804087164882266300516}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{14} + \frac{293207975874645812005101429968126293703135546545578139297855785752095060735365327715722134439315647}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{12} + \frac{218490597081071648144246612212348282414681884372585356980934549414599662505284203451377261502372350}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{10} + \frac{13910574179368262560092132934402636190340839891107466830825495074714343161095133515007176530197668}{44233121347217816428313355403323516570773417286154828454323657361508995734542511807013675381641601} a^{8} + \frac{265055769897585159492536891887833368649935916904092083906597540903554635769644784626178738497951200}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{6} - \frac{40541553489841051805194898127578190333948507532857682296797586730261323535865056469968308846895395}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{4} + \frac{1515178110343726295428589507181142995306839097432392829645281790316935278353880205147578951}{11767010309498102175642851720680389151378148021404931488357562413960705729925471586793912919} a^{2} + \frac{60900175874154577657137485518752129050106952316416530940489088421978485451515875738}{164752145958849889275689907872035860958973531624227657448701809167403781196705385419}$, $\frac{1}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{19} + \frac{2280457006980628796055958901655542764184055745382460133759879173900226614119974599606933090}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{17} + \frac{15446174839658103709806715494912205459292457920227960489444060838538606199649804087164882266300516}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{15} + \frac{293207975874645812005101429968126293703135546545578139297855785752095060735365327715722134439315647}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{13} + \frac{218490597081071648144246612212348282414681884372585356980934549414599662505284203451377261502372350}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{11} + \frac{13910574179368262560092132934402636190340839891107466830825495074714343161095133515007176530197668}{44233121347217816428313355403323516570773417286154828454323657361508995734542511807013675381641601} a^{9} + \frac{265055769897585159492536891887833368649935916904092083906597540903554635769644784626178738497951200}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{7} - \frac{40541553489841051805194898127578190333948507532857682296797586730261323535865056469968308846895395}{840429305597138512137953752663146814844694928436941740632149489868670918956307724333259832251190419} a^{5} + \frac{1515178110343726295428589507181142995306839097432392829645281790316935278353880205147578951}{11767010309498102175642851720680389151378148021404931488357562413960705729925471586793912919} a^{3} + \frac{60900175874154577657137485518752129050106952316416530940489088421978485451515875738}{164752145958849889275689907872035860958973531624227657448701809167403781196705385419} a$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 7372800 |
| The 189 conjugacy class representatives for t20n1022 are not computed |
| Character table for t20n1022 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.223195315625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $19$ | 19.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.4.0.1 | $x^{4} - 2 x + 10$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 19.6.3.2 | $x^{6} - 361 x^{2} + 27436$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 349 | Data not computed | ||||||
| 10771 | Data not computed | ||||||