Normalized defining polynomial
\( x^{20} - x^{19} + x^{18} - x^{17} - 9 x^{15} + 4 x^{14} + 11 x^{13} + 5 x^{12} - 6 x^{11} - 24 x^{10} + 9 x^{9} + 35 x^{8} + 11 x^{7} - x^{6} + 6 x^{5} + 5 x^{4} + 4 x^{3} + 6 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1900014966167022705078125=5^{15}\cdot 53^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 53$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3001} a^{18} + \frac{886}{3001} a^{17} + \frac{418}{3001} a^{16} - \frac{452}{3001} a^{15} + \frac{1245}{3001} a^{14} - \frac{186}{3001} a^{13} - \frac{989}{3001} a^{12} + \frac{868}{3001} a^{11} - \frac{306}{3001} a^{10} + \frac{228}{3001} a^{9} + \frac{344}{3001} a^{8} + \frac{691}{3001} a^{7} - \frac{1176}{3001} a^{6} - \frac{210}{3001} a^{5} - \frac{1169}{3001} a^{4} - \frac{866}{3001} a^{3} - \frac{1264}{3001} a^{2} + \frac{1238}{3001} a + \frac{674}{3001}$, $\frac{1}{23980991} a^{19} - \frac{103}{23980991} a^{18} + \frac{8265210}{23980991} a^{17} - \frac{4252133}{23980991} a^{16} - \frac{737122}{23980991} a^{15} - \frac{10828689}{23980991} a^{14} - \frac{9339208}{23980991} a^{13} - \frac{7231747}{23980991} a^{12} + \frac{7844142}{23980991} a^{11} + \frac{10017099}{23980991} a^{10} + \frac{1503428}{23980991} a^{9} + \frac{2091285}{23980991} a^{8} - \frac{11602213}{23980991} a^{7} + \frac{4881093}{23980991} a^{6} + \frac{10499951}{23980991} a^{5} + \frac{1293321}{23980991} a^{4} + \frac{2577784}{23980991} a^{3} - \frac{1380543}{23980991} a^{2} - \frac{5284061}{23980991} a - \frac{9168419}{23980991}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{113230098}{23980991} a^{19} - \frac{217294677}{23980991} a^{18} + \frac{305441318}{23980991} a^{17} - \frac{374399254}{23980991} a^{16} + \frac{315786949}{23980991} a^{15} - \frac{1273394608}{23980991} a^{14} + \frac{1589089382}{23980991} a^{13} - \frac{122550440}{23980991} a^{12} + \frac{521208488}{23980991} a^{11} - \frac{1100751822}{23980991} a^{10} - \frac{1723166886}{23980991} a^{9} + \frac{2701019032}{23980991} a^{8} + \frac{1574391426}{23980991} a^{7} - \frac{488977743}{23980991} a^{6} + \frac{317196304}{23980991} a^{5} + \frac{507368042}{23980991} a^{4} + \frac{99593619}{23980991} a^{3} + \frac{371214038}{23980991} a^{2} + \frac{336586004}{23980991} a + \frac{121406613}{23980991} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 31104.0765784 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times A_5$ (as 20T63):
| A non-solvable group of order 240 |
| The 20 conjugacy class representatives for $C_4\times A_5$ |
| Character table for $C_4\times A_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.70225.1, 10.2.24657753125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.12.0.1}{12} }{,}\,{\href{/LocalNumberField/2.4.0.1}{4} }^{2}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | $20$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | $20$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $53$ | 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 53.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 53.12.8.1 | $x^{12} - 159 x^{9} + 8427 x^{6} - 148877 x^{3} + 46017285192$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ |