Normalized defining polynomial
\( x^{20} - 3 x^{19} + 26 x^{18} + 97 x^{17} - 294 x^{16} - 440 x^{15} + 1705 x^{14} - 8469 x^{13} - 25967 x^{12} - 57053 x^{11} - 45091 x^{10} + 433083 x^{9} + 1796869 x^{8} + 4440981 x^{7} + 17183403 x^{6} + 35686946 x^{5} + 51034338 x^{4} + 54483025 x^{3} + 40765960 x^{2} + 24180423 x + 8509591 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(187640866325114773598410895050048828125=3^{10}\cdot 5^{15}\cdot 19^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 19$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{82} a^{15} - \frac{3}{41} a^{14} + \frac{5}{41} a^{13} - \frac{2}{41} a^{12} + \frac{14}{41} a^{11} + \frac{5}{41} a^{10} + \frac{19}{41} a^{9} - \frac{10}{41} a^{8} - \frac{3}{41} a^{7} - \frac{2}{41} a^{5} - \frac{20}{41} a^{4} + \frac{18}{41} a^{3} + \frac{7}{41} a^{2} - \frac{13}{41} a - \frac{1}{2}$, $\frac{1}{410} a^{16} + \frac{97}{410} a^{14} + \frac{3}{82} a^{13} + \frac{127}{410} a^{12} + \frac{11}{82} a^{11} - \frac{5}{82} a^{10} + \frac{17}{82} a^{9} + \frac{161}{410} a^{8} + \frac{1}{82} a^{7} - \frac{9}{82} a^{6} - \frac{21}{82} a^{5} + \frac{83}{410} a^{4} + \frac{5}{82} a^{3} + \frac{181}{410} a^{2} + \frac{9}{41} a + \frac{1}{10}$, $\frac{1}{410} a^{17} + \frac{1}{205} a^{15} - \frac{3}{41} a^{14} + \frac{101}{205} a^{13} - \frac{18}{41} a^{12} - \frac{2}{41} a^{11} + \frac{16}{41} a^{10} + \frac{18}{205} a^{9} + \frac{6}{41} a^{8} - \frac{9}{41} a^{7} + \frac{10}{41} a^{6} - \frac{76}{205} a^{5} - \frac{7}{41} a^{4} - \frac{2}{5} a^{3} + \frac{39}{82} a^{2} - \frac{77}{205} a$, $\frac{1}{410} a^{18} + \frac{33}{410} a^{14} - \frac{23}{82} a^{13} - \frac{189}{410} a^{12} - \frac{27}{82} a^{11} + \frac{181}{410} a^{10} + \frac{1}{82} a^{9} + \frac{13}{410} a^{8} + \frac{23}{82} a^{7} + \frac{143}{410} a^{6} - \frac{37}{82} a^{5} - \frac{19}{82} a^{4} + \frac{20}{41} a^{3} + \frac{109}{410} a^{2} + \frac{13}{82} a + \frac{3}{10}$, $\frac{1}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{19} - \frac{211817111778911475506783901461218790484446318498526240804881136461}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{18} - \frac{1045443455497261369927841522247167051387773602754712374019344299451}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{17} - \frac{93511841533650751840645591751822625014397200570618576305592152411}{157793801994843450602942661929309358536452375792695382006576308556045} a^{16} - \frac{36338466679769991319533315222280743376870252889106760453912592437}{788969009974217253014713309646546792682261878963476910032881542780225} a^{15} - \frac{140683582577529383809629710881138471180649765048963295149852410928453}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{14} - \frac{440666558047418773379728643456214300049100917748781458312787914066911}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{13} - \frac{271794940555384348844593414197606212846066490771979005403525436055861}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{12} + \frac{25210378511438450837157723975757540313864874077954441212049139199811}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{11} + \frac{314728806536723939105572011459046741766834315470134259816364261705109}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{10} + \frac{280022039704079906499826949829033302744297330524910469705058995222297}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{9} - \frac{10489387050592635449700700490735525993476525583313207348634660399433}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{8} + \frac{603212395458662747800817282414484963057085141308692776795584046216953}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{7} - \frac{373170133017895727829811853259353370939281920586602664445936957440143}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{6} + \frac{504557344488332746885249689685632926115222521878916217588483781920177}{1577938019948434506029426619293093585364523757926953820065763085560450} a^{5} - \frac{30132073693548534340961703822049500901384460481350811772419785620264}{157793801994843450602942661929309358536452375792695382006576308556045} a^{4} - \frac{99194975497188681837561632187734887462885301934612240743848630203186}{788969009974217253014713309646546792682261878963476910032881542780225} a^{3} + \frac{36054615038305185001495857380253455294115386437203841297364373332068}{788969009974217253014713309646546792682261878963476910032881542780225} a^{2} + \frac{710000846981202553931442304739177712209755592008359767726755215790777}{1577938019948434506029426619293093585364523757926953820065763085560450} a + \frac{1053125201908357907523837292210222220352089334054614566681661639137}{38486293169474012342181137055929111838159116046998873660140563062450}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3932635547.52714 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.406125.2, 5.1.16290125.1, 10.2.1326840862578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $19$ | 19.10.9.1 | $x^{10} - 19$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |
| 19.10.9.1 | $x^{10} - 19$ | $10$ | $1$ | $9$ | $D_{10}$ | $[\ ]_{10}^{2}$ |