Normalized defining polynomial
\( x^{20} + 135 x^{18} + 8010 x^{16} - 4 x^{15} + 274580 x^{14} + 230 x^{13} + 6015205 x^{12} + 24610 x^{11} + 87898049 x^{10} + 594140 x^{9} + 866646000 x^{8} + 4713030 x^{7} + 5688096720 x^{6} - 7525230 x^{5} + 23801041500 x^{4} - 238929480 x^{3} + 57642488220 x^{2} - 670653100 x + 62307524980 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18600378723064531406250000000000000000=2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{14} a^{18} - \frac{3}{14} a^{17} + \frac{3}{14} a^{16} + \frac{1}{14} a^{15} + \frac{3}{14} a^{14} + \frac{1}{7} a^{12} - \frac{1}{7} a^{10} + \frac{2}{7} a^{9} + \frac{5}{14} a^{8} + \frac{3}{14} a^{7} - \frac{2}{7} a^{6} - \frac{5}{14} a^{5} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a - \frac{3}{7}$, $\frac{1}{208319165211426994988860802416255678150665271787999324382418121190559302586} a^{19} - \frac{28855448331508977902260220487619462331724331526046225459461807256702765}{29759880744489570712694400345179382592952181683999903483202588741508471798} a^{18} + \frac{3726927180152522751347990754250058738988195758650985046837386854043552233}{208319165211426994988860802416255678150665271787999324382418121190559302586} a^{17} - \frac{24062349815545617179602305576410455760530001908350383203420709057703744534}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{16} - \frac{708267371958770582163343903911395478203859609684231068090606839351940952}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{15} - \frac{10948236333696377070827110962995363838535777743458293852161026231678802163}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{14} + \frac{22005968927328137337945987023661815983369503388064227714057733109911703953}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{13} + \frac{14883532247583998947951197096206879555965174007130214597594878615152450687}{208319165211426994988860802416255678150665271787999324382418121190559302586} a^{12} + \frac{12744143254057603468343020224606716656227555067291355245758474902655375692}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{11} - \frac{28448520725796749723404751696124522992247962849769398852173533786695481709}{208319165211426994988860802416255678150665271787999324382418121190559302586} a^{10} - \frac{24126195818767789326157172678062133339833157313932924479555387628332367109}{208319165211426994988860802416255678150665271787999324382418121190559302586} a^{9} - \frac{56160532683935891659380601734146871962060608381066888552039990531668580315}{208319165211426994988860802416255678150665271787999324382418121190559302586} a^{8} + \frac{56482041325478397963168531415476747551034701659174039068245961730886653567}{208319165211426994988860802416255678150665271787999324382418121190559302586} a^{7} - \frac{40586073566325691909187467987025630768490646182310762711703129785337274883}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{6} + \frac{4158521012208506210611840044632393223456679920910363188028015032835683916}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{5} - \frac{41499785525054160577310337625821744759103634117181652464316990852873720525}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{4} + \frac{5081029255219214514990512897226157432009698952422409002749631328104673906}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{3} - \frac{23691493969712610484068057607047336305394355785782976754164634694852937387}{104159582605713497494430401208127839075332635893999662191209060595279651293} a^{2} + \frac{35609838742786875512226769426956176797960609768147654242497422788478990867}{104159582605713497494430401208127839075332635893999662191209060595279651293} a + \frac{26850694403111700453169475725597818193411528400151850113804643220245759533}{104159582605713497494430401208127839075332635893999662191209060595279651293}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-255}) \), \(\Q(\sqrt{-51}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{5}, \sqrt{-51})\), 5.1.50000.1, 10.0.4312815637500000000.1, 10.0.862563127500000000.1, 10.2.12500000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |