Normalized defining polynomial
\( x^{20} - 8 x^{19} + 61 x^{18} - 288 x^{17} + 1519 x^{16} - 5990 x^{15} + 27289 x^{14} - 94767 x^{13} + 377005 x^{12} - 1137389 x^{11} + 3936196 x^{10} - 10220558 x^{9} + 30705792 x^{8} - 67154201 x^{7} + 172058932 x^{6} - 301380451 x^{5} + 638638334 x^{4} - 811477632 x^{3} + 1365577686 x^{2} - 975548791 x + 1232556799 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18589228510326313111158199467666015625=5^{10}\cdot 11^{16}\cdot 23^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.02$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1265=5\cdot 11\cdot 23\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1265}(896,·)$, $\chi_{1265}(1,·)$, $\chi_{1265}(599,·)$, $\chi_{1265}(344,·)$, $\chi_{1265}(1241,·)$, $\chi_{1265}(346,·)$, $\chi_{1265}(91,·)$, $\chi_{1265}(1126,·)$, $\chi_{1265}(1059,·)$, $\chi_{1265}(804,·)$, $\chi_{1265}(229,·)$, $\chi_{1265}(806,·)$, $\chi_{1265}(551,·)$, $\chi_{1265}(829,·)$, $\chi_{1265}(944,·)$, $\chi_{1265}(114,·)$, $\chi_{1265}(691,·)$, $\chi_{1265}(576,·)$, $\chi_{1265}(1149,·)$, $\chi_{1265}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{331} a^{18} + \frac{122}{331} a^{17} - \frac{143}{331} a^{16} + \frac{32}{331} a^{15} + \frac{64}{331} a^{14} + \frac{8}{331} a^{13} - \frac{147}{331} a^{12} - \frac{97}{331} a^{11} + \frac{18}{331} a^{10} + \frac{141}{331} a^{9} - \frac{120}{331} a^{8} + \frac{26}{331} a^{7} - \frac{79}{331} a^{6} + \frac{121}{331} a^{5} + \frac{11}{331} a^{4} + \frac{8}{331} a^{3} + \frac{80}{331} a^{2} + \frac{37}{331} a + \frac{112}{331}$, $\frac{1}{68730702715295126985580035853021163092856651588239201320522237788353} a^{19} - \frac{4213499342842953802070148193575358278716800702424987052308445759}{68730702715295126985580035853021163092856651588239201320522237788353} a^{18} - \frac{86753832483936124532561691821905000268835650888227058533493646669}{207645627538655972766102827350517109041862995734861635409432742563} a^{17} + \frac{10659698462395752963448653801688051061587260538893370451218238093040}{68730702715295126985580035853021163092856651588239201320522237788353} a^{16} - \frac{34039127216373573441520368036441000473036140455826570895331682342507}{68730702715295126985580035853021163092856651588239201320522237788353} a^{15} + \frac{30132209091745295006445874092640523812790223791207357010154802304910}{68730702715295126985580035853021163092856651588239201320522237788353} a^{14} + \frac{5372496762248423308200846276712843849979089369422075038949176693685}{68730702715295126985580035853021163092856651588239201320522237788353} a^{13} + \frac{4621658286076578759313678325542949477252581071532712294619634263352}{68730702715295126985580035853021163092856651588239201320522237788353} a^{12} - \frac{13660759281242147979018375927483267269195495013621994132511247647724}{68730702715295126985580035853021163092856651588239201320522237788353} a^{11} + \frac{2728644223452521268420046384429430532891754272681064447764463522809}{68730702715295126985580035853021163092856651588239201320522237788353} a^{10} - \frac{25489000150584516899165751504914480531207025568339413959985916615323}{68730702715295126985580035853021163092856651588239201320522237788353} a^{9} + \frac{1542620131276330474289354489279118569868037526803645679168433345596}{68730702715295126985580035853021163092856651588239201320522237788353} a^{8} + \frac{27608085987129348343018506528868382843187020592526182783066024459182}{68730702715295126985580035853021163092856651588239201320522237788353} a^{7} - \frac{23678404680780217464137035955059010541932303155795803891582917618711}{68730702715295126985580035853021163092856651588239201320522237788353} a^{6} + \frac{31325660558580123611411191601128759651167692812590913007703269999454}{68730702715295126985580035853021163092856651588239201320522237788353} a^{5} - \frac{7908968647086553030548964660068048595459910552220531955185148343490}{68730702715295126985580035853021163092856651588239201320522237788353} a^{4} - \frac{6288019580548288304705661904418642604245927571939512312226842090491}{68730702715295126985580035853021163092856651588239201320522237788353} a^{3} + \frac{27870561158924775675764959930285350394627466672027993537325099739157}{68730702715295126985580035853021163092856651588239201320522237788353} a^{2} + \frac{30544196477654561952785982801078366213144145641723841470800455643987}{68730702715295126985580035853021163092856651588239201320522237788353} a + \frac{24187675922378739516869728304649629683416246186211356190648238869368}{68730702715295126985580035853021163092856651588239201320522237788353}$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{1212}$, which has order $77568$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-23}) \), \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{5}, \sqrt{-23})\), \(\Q(\zeta_{11})^+\), 10.10.669871503125.1, 10.0.1379687283212183.1, 10.0.4311522760038071875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| $23$ | 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |