Normalized defining polynomial
\( x^{20} + 200 x^{18} + 16430 x^{16} + 736170 x^{14} + 19971630 x^{12} + 342629406 x^{10} + 3757874380 x^{8} + 25954091375 x^{6} + 107663590980 x^{4} + 240992815830 x^{2} + 219147162389 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1853091914135141046229493177600000000000000=2^{20}\cdot 5^{14}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.84$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{10} - \frac{2}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{13} - \frac{2}{5} a^{11} - \frac{2}{5} a^{3} - \frac{1}{5} a$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{10} - \frac{2}{5} a^{4} - \frac{2}{5}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{11} - \frac{2}{5} a^{5} - \frac{2}{5} a$, $\frac{1}{150725} a^{16} + \frac{6229}{150725} a^{14} + \frac{4372}{150725} a^{12} - \frac{29513}{150725} a^{10} - \frac{1786}{6029} a^{8} + \frac{49568}{150725} a^{6} - \frac{43523}{150725} a^{4} - \frac{6}{25} a^{2} + \frac{9}{25}$, $\frac{1}{150725} a^{17} + \frac{6229}{150725} a^{15} + \frac{4372}{150725} a^{13} - \frac{29513}{150725} a^{11} - \frac{1786}{6029} a^{9} + \frac{49568}{150725} a^{7} - \frac{43523}{150725} a^{5} - \frac{6}{25} a^{3} + \frac{9}{25} a$, $\frac{1}{24208495805919174659076521636220126175} a^{18} - \frac{5905738556812347109685473426566}{4841699161183834931815304327244025235} a^{16} - \frac{525492712158113288796727733718357144}{24208495805919174659076521636220126175} a^{14} - \frac{567417268020990762413093671235281931}{24208495805919174659076521636220126175} a^{12} + \frac{700485605916885402865748113736295979}{1862191985070705743005886279709240475} a^{10} + \frac{9089011849804155466323154685519960593}{24208495805919174659076521636220126175} a^{8} - \frac{754210193953107470083973786522811372}{4841699161183834931815304327244025235} a^{6} + \frac{1119836693460257784962799989732892}{4015341815544729583525712661506075} a^{4} + \frac{1897778180649062633587934083070473}{4015341815544729583525712661506075} a^{2} - \frac{266348354987827568578274134259}{666004613624934414252067119175}$, $\frac{1}{24208495805919174659076521636220126175} a^{19} - \frac{5905738556812347109685473426566}{4841699161183834931815304327244025235} a^{17} - \frac{525492712158113288796727733718357144}{24208495805919174659076521636220126175} a^{15} - \frac{567417268020990762413093671235281931}{24208495805919174659076521636220126175} a^{13} + \frac{700485605916885402865748113736295979}{1862191985070705743005886279709240475} a^{11} + \frac{9089011849804155466323154685519960593}{24208495805919174659076521636220126175} a^{9} - \frac{754210193953107470083973786522811372}{4841699161183834931815304327244025235} a^{7} + \frac{1119836693460257784962799989732892}{4015341815544729583525712661506075} a^{5} + \frac{1897778180649062633587934083070473}{4015341815544729583525712661506075} a^{3} - \frac{266348354987827568578274134259}{666004613624934414252067119175} a$
Class group and class number
$C_{2}\times C_{6707608}$, which has order $13415216$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 341439.528105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n796 are not computed |
| Character table for t20n796 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||