Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 105 x^{16} + 228 x^{15} + 90 x^{14} - 540 x^{13} + 45 x^{12} + 770 x^{11} + 67097 x^{10} - 336910 x^{9} + 4537935 x^{8} - 16134180 x^{7} + 49412670 x^{6} - 93178236 x^{5} + 127060815 x^{4} - 116976690 x^{3} + 71093645 x^{2} - 25546630 x + 1134035519 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(185122979184640000000000000000000000=2^{38}\cdot 5^{22}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7} a^{4} - \frac{2}{7} a^{3} - \frac{1}{7} a^{2} + \frac{2}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{5} + \frac{2}{7} a^{3} - \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{6} - \frac{3}{7} a^{3} - \frac{2}{7} a - \frac{2}{7}$, $\frac{1}{7} a^{7} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{49} a^{8} + \frac{3}{49} a^{7} + \frac{2}{49} a^{6} + \frac{1}{49} a^{5} + \frac{2}{49} a^{4} + \frac{20}{49} a^{3} + \frac{9}{49} a^{2} + \frac{11}{49} a + \frac{15}{49}$, $\frac{1}{49} a^{9} + \frac{2}{49} a^{6} - \frac{1}{49} a^{5} + \frac{12}{49} a^{3} + \frac{12}{49} a^{2} + \frac{17}{49} a - \frac{3}{49}$, $\frac{1}{245} a^{10} - \frac{1}{49} a^{7} - \frac{3}{49} a^{6} + \frac{2}{35} a^{5} + \frac{1}{49} a^{4} + \frac{8}{49} a^{3} + \frac{2}{49} a^{2} - \frac{9}{49} a + \frac{4}{35}$, $\frac{1}{245} a^{11} - \frac{11}{245} a^{6} + \frac{2}{49} a^{5} + \frac{3}{49} a^{4} + \frac{8}{49} a^{3} + \frac{1}{7} a^{2} + \frac{83}{245} a + \frac{22}{49}$, $\frac{1}{1715} a^{12} + \frac{1}{1715} a^{11} + \frac{2}{1715} a^{10} + \frac{2}{343} a^{9} + \frac{1}{343} a^{8} - \frac{111}{1715} a^{7} - \frac{106}{1715} a^{6} + \frac{13}{1715} a^{5} + \frac{22}{343} a^{4} - \frac{107}{343} a^{3} - \frac{677}{1715} a^{2} - \frac{232}{1715} a - \frac{174}{1715}$, $\frac{1}{1715} a^{13} + \frac{1}{1715} a^{11} + \frac{1}{1715} a^{10} - \frac{1}{343} a^{9} - \frac{11}{1715} a^{8} + \frac{22}{343} a^{7} - \frac{8}{245} a^{6} + \frac{104}{1715} a^{5} + \frac{4}{343} a^{4} + \frac{208}{1715} a^{3} + \frac{68}{343} a^{2} + \frac{793}{1715} a + \frac{573}{1715}$, $\frac{1}{1715} a^{14} + \frac{2}{245} a^{9} - \frac{10}{343} a^{7} - \frac{1}{49} a^{6} - \frac{1}{49} a^{5} - \frac{11}{245} a^{4} - \frac{8}{49} a^{3} - \frac{6}{49} a^{2} - \frac{23}{49} a - \frac{115}{343}$, $\frac{1}{1715} a^{15} - \frac{3}{343} a^{8} - \frac{3}{49} a^{7} + \frac{1}{245} a^{5} - \frac{1}{49} a^{4} + \frac{12}{49} a^{3} + \frac{10}{49} a^{2} - \frac{10}{343} a + \frac{89}{245}$, $\frac{1}{60025} a^{16} - \frac{8}{60025} a^{15} - \frac{8}{60025} a^{14} - \frac{2}{8575} a^{13} - \frac{2}{8575} a^{12} - \frac{2}{1225} a^{11} - \frac{1}{1715} a^{10} - \frac{127}{60025} a^{9} + \frac{309}{60025} a^{8} + \frac{134}{60025} a^{7} + \frac{66}{1715} a^{6} - \frac{59}{1225} a^{5} + \frac{298}{8575} a^{4} + \frac{2059}{8575} a^{3} - \frac{25012}{60025} a^{2} - \frac{19186}{60025} a + \frac{5636}{60025}$, $\frac{1}{60025} a^{17} - \frac{2}{60025} a^{15} - \frac{8}{60025} a^{14} + \frac{2}{8575} a^{13} + \frac{3}{8575} a^{11} - \frac{92}{60025} a^{10} + \frac{64}{8575} a^{9} - \frac{159}{60025} a^{8} - \frac{678}{60025} a^{7} + \frac{307}{8575} a^{6} - \frac{606}{8575} a^{5} + \frac{198}{8575} a^{4} - \frac{29688}{60025} a^{3} + \frac{1539}{8575} a^{2} + \frac{26343}{60025} a + \frac{12993}{60025}$, $\frac{1}{935857098061423066088525} a^{18} - \frac{9}{935857098061423066088525} a^{17} - \frac{7279500773003928317}{935857098061423066088525} a^{16} + \frac{11647201236806285348}{187171419612284613217705} a^{15} - \frac{247279341802477457744}{935857098061423066088525} a^{14} + \frac{23733716341447365087}{133693871151631866584075} a^{13} + \frac{1276356656114251968}{133693871151631866584075} a^{12} + \frac{436363114744921113749}{935857098061423066088525} a^{11} - \frac{1086748407371728466664}{935857098061423066088525} a^{10} + \frac{90598901084571211964}{935857098061423066088525} a^{9} + \frac{3195799187860687459293}{935857098061423066088525} a^{8} - \frac{46400201433467153092704}{935857098061423066088525} a^{7} - \frac{4875429949076607569449}{133693871151631866584075} a^{6} + \frac{9418061657325107873502}{133693871151631866584075} a^{5} + \frac{43445066994466782356123}{935857098061423066088525} a^{4} + \frac{58804136778163498629599}{187171419612284613217705} a^{3} - \frac{254912877820105140875524}{935857098061423066088525} a^{2} - \frac{315580336293352061633474}{935857098061423066088525} a - \frac{39597196854686960234867}{935857098061423066088525}$, $\frac{1}{32215814659529797089225198295025} a^{19} + \frac{17211921}{32215814659529797089225198295025} a^{18} + \frac{11694532067395490092094964}{4602259237075685298460742613575} a^{17} - \frac{944646737457764449029098}{1895047921148811593483835193825} a^{16} - \frac{8399314488412066474171164846}{32215814659529797089225198295025} a^{15} + \frac{6644046190982292345362380402}{32215814659529797089225198295025} a^{14} - \frac{21427722218899757598772264}{131493121059305294241735503245} a^{13} + \frac{2809905644280111432156287983}{32215814659529797089225198295025} a^{12} + \frac{31565247657696918963769629729}{32215814659529797089225198295025} a^{11} + \frac{1843294295053589283495298227}{4602259237075685298460742613575} a^{10} - \frac{45495937126580584774790542368}{6443162931905959417845039659005} a^{9} - \frac{319066083804354048632550688283}{32215814659529797089225198295025} a^{8} + \frac{1733819738290873544439435290783}{32215814659529797089225198295025} a^{7} + \frac{131010059732666503891963566732}{4602259237075685298460742613575} a^{6} + \frac{1155950484926306789093102577554}{32215814659529797089225198295025} a^{5} + \frac{2218966895257557628753858635264}{32215814659529797089225198295025} a^{4} + \frac{19878110502217325607788449024}{4602259237075685298460742613575} a^{3} + \frac{2699881652271503044853366031543}{32215814659529797089225198295025} a^{2} + \frac{6987109273271187518117068396214}{32215814659529797089225198295025} a - \frac{2999959851101414761153305171521}{32215814659529797089225198295025}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{5}, \sqrt{-14})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.86051840000000000.4, 10.0.430259200000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ |
| 5.10.11.2 | $x^{10} + 5 x^{2} + 5$ | $10$ | $1$ | $11$ | $F_5$ | $[5/4]_{4}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |