Normalized defining polynomial
\( x^{20} - 8 x^{19} + 63 x^{18} - 300 x^{17} + 1357 x^{16} - 4724 x^{15} + 15650 x^{14} - 43334 x^{13} + 113629 x^{12} - 258210 x^{11} + 553307 x^{10} - 1047220 x^{9} + 1852214 x^{8} - 2909058 x^{7} + 4222990 x^{6} - 5414292 x^{5} + 6184004 x^{4} - 6044510 x^{3} + 5034175 x^{2} - 3157754 x + 1126631 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1844489348608657807063040000000000=2^{20}\cdot 5^{10}\cdot 11^{5}\cdot 5783^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 5783$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{4046526661671911} a^{18} - \frac{930554385883112}{4046526661671911} a^{17} + \frac{28153261683520}{76349559654187} a^{16} + \frac{615514032360843}{4046526661671911} a^{15} + \frac{228458996504944}{4046526661671911} a^{14} + \frac{806974331667197}{4046526661671911} a^{13} - \frac{886622239691892}{4046526661671911} a^{12} + \frac{720398128693113}{4046526661671911} a^{11} + \frac{234164965213559}{4046526661671911} a^{10} - \frac{1030878556156569}{4046526661671911} a^{9} + \frac{459356941396964}{4046526661671911} a^{8} + \frac{137483170521506}{4046526661671911} a^{7} - \frac{955661982193993}{4046526661671911} a^{6} + \frac{299254678314147}{4046526661671911} a^{5} + \frac{594447390208956}{4046526661671911} a^{4} - \frac{1512435462676294}{4046526661671911} a^{3} - \frac{124249118978748}{4046526661671911} a^{2} + \frac{1603622946474306}{4046526661671911} a - \frac{811395971973644}{4046526661671911}$, $\frac{1}{236130459132010190911847742215793151979} a^{19} - \frac{14659838961219917572588}{236130459132010190911847742215793151979} a^{18} - \frac{84969906703743202136599912046403839250}{236130459132010190911847742215793151979} a^{17} + \frac{14192790648371340729260130443224582556}{236130459132010190911847742215793151979} a^{16} + \frac{110102734805828283663522595158926397148}{236130459132010190911847742215793151979} a^{15} + \frac{99327455026703650718382815698124824525}{236130459132010190911847742215793151979} a^{14} + \frac{7398066013461093121120735100985353750}{236130459132010190911847742215793151979} a^{13} + \frac{63419556433582225410106762530926606420}{236130459132010190911847742215793151979} a^{12} - \frac{28665036744015337890417521356202753790}{236130459132010190911847742215793151979} a^{11} + \frac{44429860899553873020015013970284687831}{236130459132010190911847742215793151979} a^{10} - \frac{29486610774869776817969403528992992126}{236130459132010190911847742215793151979} a^{9} - \frac{102990810495860745695294405997797921519}{236130459132010190911847742215793151979} a^{8} - \frac{111538789963545237038691609874820286298}{236130459132010190911847742215793151979} a^{7} + \frac{82220764401794378576021994362393684659}{236130459132010190911847742215793151979} a^{6} + \frac{62548581176569260451927746402979533928}{236130459132010190911847742215793151979} a^{5} + \frac{85760025794045939832911207257304487367}{236130459132010190911847742215793151979} a^{4} + \frac{331946536194743062579492753844087169}{236130459132010190911847742215793151979} a^{3} + \frac{7352508769001192458402310609133906794}{236130459132010190911847742215793151979} a^{2} - \frac{34203738099390496605602664252926441269}{236130459132010190911847742215793151979} a + \frac{38402820142398504832213585319885915724}{236130459132010190911847742215793151979}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 55192072.3215 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 960 |
| The 35 conjugacy class representatives for t20n174 |
| Character table for t20n174 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.4400.1, 5.3.5783.1, 10.6.104509653125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5783 | Data not computed | ||||||