Normalized defining polynomial
\( x^{20} - 5 x^{19} + 54 x^{18} - 316 x^{17} + 1826 x^{16} - 8897 x^{15} + 39894 x^{14} - 156656 x^{13} + 557433 x^{12} - 1787652 x^{11} + 5172726 x^{10} - 13325642 x^{9} + 30691226 x^{8} - 62199734 x^{7} + 109814668 x^{6} - 159859442 x^{5} + 187140141 x^{4} - 156275611 x^{3} + 91765744 x^{2} - 17366336 x + 4729127 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(183904915634328585745158994451759104=2^{32}\cdot 83^{4}\cdot 983^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 83, 983$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{26} a^{18} - \frac{3}{13} a^{17} - \frac{5}{26} a^{16} - \frac{6}{13} a^{15} + \frac{5}{26} a^{14} - \frac{5}{13} a^{13} + \frac{7}{26} a^{12} + \frac{3}{13} a^{10} - \frac{1}{13} a^{9} + \frac{1}{13} a^{8} + \frac{3}{13} a^{7} - \frac{6}{13} a^{6} + \frac{1}{13} a^{4} - \frac{2}{13} a^{3} - \frac{3}{26} a^{2} - \frac{4}{13} a - \frac{1}{2}$, $\frac{1}{6753362071575057568269266220593409525481931539066959170105546271768722} a^{19} - \frac{24305995870444458032217787725867115771005653716668744149329475847301}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{18} + \frac{128335365869112127743336041770059873391182882597362752351715277106629}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{17} + \frac{110605249864993925929722498520173104631934079781280106541003087345878}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{16} - \frac{607561034969930385976530605450977548938310618609225001432050973784373}{6753362071575057568269266220593409525481931539066959170105546271768722} a^{15} + \frac{50629609139861985499638082392793367942255366992079962320684614610783}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{14} - \frac{1296716048527832097884589414138773255442752747084987004275828153547289}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{13} - \frac{19216816044660129992455928282517498075774804860374494387634891286726}{259744695060579137241125623868977289441612751502575352696367164298797} a^{12} - \frac{262480931920151148538019158743865906642810699251692697758009272248235}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{11} + \frac{884241886402556864899126849245551097646628338093198505830343369817188}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{10} - \frac{1261006889731276818732954581325858621907237987484329559154875079813890}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{9} - \frac{1629426221885733794375820403513380187314496651363561120832860773611617}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{8} - \frac{314103139508185467921347926273286592787785219777369159564083459296514}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{7} + \frac{62901612298677020531260800652554816641537253134888693863649202199145}{259744695060579137241125623868977289441612751502575352696367164298797} a^{6} - \frac{927733731259470157611194115494195899541636027733022367856241224957534}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{5} - \frac{1017781277645945447769318550889495772217645090381200986887670523298071}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{4} + \frac{1525098675503853303332273990187259774821348994730061414168123621399919}{6753362071575057568269266220593409525481931539066959170105546271768722} a^{3} - \frac{920528799160837872646742987661119735076735930884211807225071070256765}{3376681035787528784134633110296704762740965769533479585052773135884361} a^{2} - \frac{32354348110231675318372367318315337285672630763936120918749025094356}{259744695060579137241125623868977289441612751502575352696367164298797} a + \frac{6415531980841841140121593269411387746847362655069843945367175060}{19980361158506087480086586451459791495508673192505796361259012638369}$
Class group and class number
$C_{2}\times C_{2}\times C_{1514}$, which has order $6056$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 272473.726744 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 61440 |
| The 126 conjugacy class representatives for t20n673 are not computed |
| Character table for t20n673 is not computed |
Intermediate fields
| 5.5.81589.1, 10.10.1704131819776.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | $16{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.8.0.1}{8} }$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $16{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.8.0.1}{8} }$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 83 | Data not computed | ||||||
| 983 | Data not computed | ||||||