Normalized defining polynomial
\( x^{20} + 264 x^{16} + 3520 x^{14} - 27984 x^{12} + 330880 x^{10} - 727936 x^{8} - 2787840 x^{6} + 63222016 x^{4} - 179660800 x^{2} + 247808000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(182187370528513441169408000000000000000=2^{30}\cdot 5^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{8} a^{5} - \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{6} - \frac{1}{16} a^{4} + \frac{1}{8} a^{2}$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{64} a^{8} + \frac{1}{8} a^{2}$, $\frac{1}{64} a^{9} + \frac{1}{8} a^{3}$, $\frac{1}{1408} a^{10} - \frac{1}{16} a^{4}$, $\frac{1}{2816} a^{11} - \frac{1}{64} a^{7} + \frac{3}{16} a^{3} - \frac{1}{2} a$, $\frac{1}{11264} a^{12} - \frac{1}{2816} a^{10} + \frac{1}{256} a^{8} - \frac{1}{64} a^{6} - \frac{1}{64} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{11264} a^{13} + \frac{1}{256} a^{9} + \frac{3}{64} a^{5} - \frac{1}{16} a^{3}$, $\frac{1}{22528} a^{14} - \frac{1}{5632} a^{10} - \frac{1}{128} a^{6} - \frac{1}{32} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{22528} a^{15} - \frac{1}{5632} a^{11} - \frac{1}{128} a^{7} - \frac{1}{32} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{10633216} a^{16} - \frac{47}{5316608} a^{14} - \frac{51}{1329152} a^{12} - \frac{103}{1329152} a^{10} - \frac{81}{30208} a^{8} - \frac{169}{30208} a^{6} - \frac{721}{15104} a^{4} - \frac{391}{1888} a^{2} + \frac{67}{236}$, $\frac{1}{10633216} a^{17} - \frac{47}{5316608} a^{15} - \frac{51}{1329152} a^{13} - \frac{103}{1329152} a^{11} - \frac{81}{30208} a^{9} - \frac{169}{30208} a^{7} - \frac{721}{15104} a^{5} - \frac{391}{1888} a^{3} + \frac{67}{236} a$, $\frac{1}{7897860582298255360} a^{18} - \frac{1287147545}{71798732566347776} a^{16} + \frac{1309322656123}{89748415707934720} a^{14} + \frac{608536983891}{17949683141586944} a^{12} + \frac{1917818307263}{22437103926983680} a^{10} - \frac{11450845237705}{4487420785396736} a^{8} - \frac{7033951533139}{1019868360317440} a^{6} - \frac{1449328826033}{12748354503968} a^{4} + \frac{2980018942931}{15935443129960} a^{2} + \frac{189290957758}{398386078249}$, $\frac{1}{39489302911491276800} a^{19} - \frac{257429509}{71798732566347776} a^{17} + \frac{9277044221103}{448742078539673600} a^{15} + \frac{3795625609883}{89748415707934720} a^{13} - \frac{549991205247}{10198683603174400} a^{11} - \frac{46508820123617}{22437103926983680} a^{9} - \frac{54840280923019}{5099341801587200} a^{7} - \frac{923857452141}{31870886259920} a^{5} + \frac{621493666772}{9959651956225} a^{3} + \frac{155393598753}{796772156498} a$
Class group and class number
$C_{2}\times C_{2}\times C_{20}$, which has order $80$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1640482329.2124414 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.968000.5, 5.1.1830125.1, 10.2.16746787578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.4 | $x^{4} - 2 x^{2} + 20$ | $2$ | $2$ | $6$ | $C_4$ | $[3]^{2}$ |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 2.8.12.2 | $x^{8} + 2 x^{6} + 8 x^{4} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.8 | $x^{10} + 33$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |