Normalized defining polynomial
\( x^{20} + 110 x^{18} + 5060 x^{16} + 127600 x^{14} + 1944800 x^{12} + 18612000 x^{10} + 112288000 x^{8} + 416240000 x^{6} + 890560000 x^{4} + 968000000 x^{2} + 387200000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(182187370528513441169408000000000000000=2^{30}\cdot 5^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(440=2^{3}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{440}(1,·)$, $\chi_{440}(43,·)$, $\chi_{440}(9,·)$, $\chi_{440}(81,·)$, $\chi_{440}(83,·)$, $\chi_{440}(89,·)$, $\chi_{440}(347,·)$, $\chi_{440}(361,·)$, $\chi_{440}(289,·)$, $\chi_{440}(227,·)$, $\chi_{440}(401,·)$, $\chi_{440}(169,·)$, $\chi_{440}(107,·)$, $\chi_{440}(387,·)$, $\chi_{440}(307,·)$, $\chi_{440}(49,·)$, $\chi_{440}(403,·)$, $\chi_{440}(201,·)$, $\chi_{440}(283,·)$, $\chi_{440}(123,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{20} a^{4}$, $\frac{1}{20} a^{5}$, $\frac{1}{40} a^{6}$, $\frac{1}{40} a^{7}$, $\frac{1}{400} a^{8}$, $\frac{1}{400} a^{9}$, $\frac{1}{8800} a^{10}$, $\frac{1}{8800} a^{11}$, $\frac{1}{88000} a^{12}$, $\frac{1}{88000} a^{13}$, $\frac{1}{176000} a^{14}$, $\frac{1}{176000} a^{15}$, $\frac{1}{1760000} a^{16}$, $\frac{1}{1760000} a^{17}$, $\frac{1}{38720000} a^{18} - \frac{1}{1100} a^{8}$, $\frac{1}{38720000} a^{19} - \frac{1}{1100} a^{9}$
Class group and class number
$C_{2}\times C_{2}\times C_{62564}$, which has order $250256$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 140644.599182 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 20 |
| The 20 conjugacy class representatives for $C_{20}$ |
| Character table for $C_{20}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.968000.5, \(\Q(\zeta_{11})^+\), 10.10.669871503125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | R | $20$ | R | $20$ | $20$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | $20$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | $20$ | $20$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.7 | $x^{10} + 2673$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |