Normalized defining polynomial
\( x^{20} - 3 x^{19} + 13 x^{18} - 18 x^{17} + 74 x^{16} - 63 x^{15} + 202 x^{14} + 3 x^{13} + 828 x^{12} - 357 x^{11} - 578 x^{10} - 2484 x^{9} - 1065 x^{8} - 789 x^{7} + 994 x^{6} + 1896 x^{5} + 2446 x^{4} + 2010 x^{3} + 700 x^{2} + 690 x + 545 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(181102173953389804962158203125=3^{16}\cdot 5^{15}\cdot 13^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{14} - \frac{1}{10} a^{13} - \frac{1}{10} a^{11} - \frac{1}{10} a^{9} - \frac{1}{2} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{10} a^{15} - \frac{1}{10} a^{13} - \frac{1}{10} a^{12} - \frac{1}{10} a^{11} - \frac{1}{10} a^{10} + \frac{2}{5} a^{9} - \frac{1}{10} a^{8} + \frac{2}{5} a^{7} - \frac{1}{10} a^{6} + \frac{3}{10} a^{5} + \frac{2}{5} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{440} a^{16} + \frac{1}{44} a^{15} - \frac{3}{220} a^{14} - \frac{51}{440} a^{13} + \frac{13}{55} a^{12} + \frac{13}{55} a^{11} - \frac{21}{440} a^{10} - \frac{181}{440} a^{9} + \frac{41}{110} a^{8} - \frac{1}{40} a^{7} + \frac{83}{440} a^{6} + \frac{169}{440} a^{5} - \frac{1}{11} a^{4} - \frac{3}{11} a^{3} + \frac{5}{11} a^{2} - \frac{43}{88} a + \frac{15}{88}$, $\frac{1}{440} a^{17} - \frac{9}{220} a^{15} + \frac{9}{440} a^{14} + \frac{43}{220} a^{13} + \frac{19}{110} a^{12} - \frac{49}{440} a^{11} - \frac{59}{440} a^{10} - \frac{47}{220} a^{9} - \frac{199}{440} a^{8} - \frac{23}{88} a^{7} + \frac{131}{440} a^{6} - \frac{73}{220} a^{5} + \frac{24}{55} a^{4} + \frac{2}{11} a^{3} + \frac{41}{88} a^{2} + \frac{5}{88} a - \frac{9}{44}$, $\frac{1}{749320} a^{18} - \frac{45}{74932} a^{17} + \frac{401}{749320} a^{16} + \frac{20439}{749320} a^{15} + \frac{751}{28820} a^{14} + \frac{66683}{749320} a^{13} - \frac{175913}{749320} a^{12} - \frac{30177}{749320} a^{11} + \frac{154057}{749320} a^{10} + \frac{74079}{374660} a^{9} + \frac{233611}{749320} a^{8} + \frac{3291}{93665} a^{7} + \frac{334941}{749320} a^{6} - \frac{57601}{749320} a^{5} - \frac{7968}{93665} a^{4} - \frac{5281}{13624} a^{3} - \frac{7889}{149864} a^{2} - \frac{68773}{149864} a - \frac{27151}{149864}$, $\frac{1}{513249990198706799581400} a^{19} + \frac{279722572371518101}{513249990198706799581400} a^{18} - \frac{525146998547869347083}{513249990198706799581400} a^{17} - \frac{25335357296024353937}{102649998039741359916280} a^{16} - \frac{9576108444726597349271}{513249990198706799581400} a^{15} - \frac{5375644046743172729807}{513249990198706799581400} a^{14} - \frac{56629798665292703187231}{513249990198706799581400} a^{13} - \frac{1355903766239960775802}{64156248774838349947675} a^{12} + \frac{14436947459648381625953}{64156248774838349947675} a^{11} + \frac{16220796804996238658397}{256624995099353399790700} a^{10} - \frac{12068325485532322422974}{64156248774838349947675} a^{9} + \frac{151819570680241933353903}{513249990198706799581400} a^{8} - \frac{7898666765148761413646}{64156248774838349947675} a^{7} + \frac{113102881177337306314079}{513249990198706799581400} a^{6} + \frac{2034563122118658642219}{10264999803974135991628} a^{5} + \frac{160004795088356268080661}{513249990198706799581400} a^{4} + \frac{14749710883062107421853}{51324999019870679958140} a^{3} + \frac{268684415155303391147}{649683531897097214660} a^{2} + \frac{2861756385891498419593}{7896153695364719993560} a + \frac{159704849385508816723}{470871550641015412460}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2671069.94942 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.21125.1, 5.1.1711125.1 x5, 10.2.14639743828125.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.1711125.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $13$ | 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |