Normalized defining polynomial
\( x^{20} - 20 x^{18} + 265 x^{16} - 2560 x^{14} + 18470 x^{12} - 102244 x^{10} + 429690 x^{8} - 1310400 x^{6} + 2727945 x^{4} - 3547800 x^{2} + 2259009 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1805510340771840000000000000000000000=2^{44}\cdot 3^{16}\cdot 5^{22}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{66} a^{10} - \frac{7}{22} a^{8} - \frac{2}{33} a^{4} + \frac{7}{22} a^{2} - \frac{5}{22}$, $\frac{1}{66} a^{11} + \frac{1}{66} a^{9} - \frac{2}{33} a^{5} - \frac{1}{66} a^{3} - \frac{5}{22} a$, $\frac{1}{66} a^{12} + \frac{7}{22} a^{8} - \frac{2}{33} a^{6} + \frac{1}{22} a^{4} + \frac{5}{11} a^{2} + \frac{5}{22}$, $\frac{1}{66} a^{13} - \frac{1}{66} a^{9} - \frac{2}{33} a^{7} + \frac{1}{22} a^{5} - \frac{7}{33} a^{3} + \frac{5}{22} a$, $\frac{1}{66} a^{14} - \frac{25}{66} a^{8} + \frac{1}{22} a^{6} - \frac{3}{11} a^{4} - \frac{5}{11} a^{2} - \frac{5}{22}$, $\frac{1}{198} a^{15} + \frac{1}{198} a^{13} + \frac{1}{198} a^{11} - \frac{25}{198} a^{9} - \frac{1}{198} a^{7} - \frac{19}{198} a^{5} + \frac{29}{66} a^{3} - \frac{9}{22} a$, $\frac{1}{396} a^{16} - \frac{1}{198} a^{14} - \frac{1}{198} a^{12} + \frac{1}{198} a^{10} - \frac{1}{6} a^{9} + \frac{19}{198} a^{8} - \frac{4}{99} a^{6} + \frac{2}{33} a^{4} - \frac{1}{3} a^{3} - \frac{3}{11} a^{2} - \frac{1}{2} a - \frac{1}{44}$, $\frac{1}{396} a^{17} - \frac{1}{198} a^{11} - \frac{1}{22} a^{9} - \frac{1}{2} a^{8} - \frac{1}{22} a^{7} + \frac{5}{198} a^{5} + \frac{2}{11} a^{3} - \frac{9}{44} a - \frac{1}{2}$, $\frac{1}{899307992341836} a^{18} + \frac{107722000747}{899307992341836} a^{16} - \frac{3255245783011}{449653996170918} a^{14} + \frac{242873258497}{64236285167274} a^{12} + \frac{1008734634679}{449653996170918} a^{10} + \frac{41703730084211}{224826998085459} a^{8} - \frac{89088399535}{16653851710034} a^{6} - \frac{3365382098719}{49961555130102} a^{4} - \frac{10637816739197}{33307703420068} a^{2} + \frac{3149125642235}{33307703420068}$, $\frac{1}{150184434721086612} a^{19} + \frac{2325041182718}{3413282607297423} a^{17} + \frac{105751783591757}{75092217360543306} a^{15} + \frac{27859832496935}{5363729811467379} a^{13} - \frac{241354979107927}{37546108680271653} a^{11} + \frac{273212031019156}{3413282607297423} a^{9} - \frac{1}{2} a^{8} + \frac{393213454134899}{1390596617787839} a^{7} + \frac{94764018843047}{2781193235575678} a^{5} + \frac{30723237005347}{99923110260204} a^{3} + \frac{66517687423109}{252835748688698} a - \frac{1}{2}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23657493051.91988 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-2}, \sqrt{-5})\), 5.1.4050000.3, 10.2.167961600000000000.3, 10.0.33592320000000000.77, 10.0.5248800000000000.42 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 3.5.4.1 | $x^{5} - 3$ | $5$ | $1$ | $4$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||