Normalized defining polynomial
\( x^{20} - 2 x^{19} + 13 x^{18} - 48 x^{17} - 144 x^{16} + 1104 x^{15} - 3102 x^{14} + 9012 x^{13} - 513 x^{12} - 94802 x^{11} + 376063 x^{10} - 1108412 x^{9} + 2141184 x^{8} + 812556 x^{7} - 15950598 x^{6} + 42851868 x^{5} - 57380232 x^{4} - 22835628 x^{3} + 286416976 x^{2} - 524324336 x + 358394404 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(179301087802125125222400000000000000=2^{28}\cdot 3^{18}\cdot 5^{14}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{6} a^{10} - \frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{6} a^{13} + \frac{1}{3} a^{9} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3}$, $\frac{1}{6} a^{14} + \frac{1}{3} a^{9} - \frac{1}{2} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3}$, $\frac{1}{6} a^{15} + \frac{1}{3} a^{9} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{6} a^{16} + \frac{1}{3} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3}$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{6} a^{18} + \frac{1}{6} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{3}$, $\frac{1}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{19} - \frac{1468855230481799274680908170866498254175280566422844397000986595806061425}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{18} - \frac{12646129727610253068371580216485359050559740364420174886231117623523185501}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{17} + \frac{8616571113638610540507856837337115813601236617591107823341815684648167285}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{16} + \frac{7530446038600295146328468655015824119568574377288893541839264007749609145}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{15} + \frac{4980687253916107375436312989140343311076370544428255801339519091705642293}{89938667022635239480773587194011524285618886513816096201175497682798472271} a^{14} + \frac{1057691513993248209971744924869121527072913768235414665549664656989258581}{59959111348423492987182391462674349523745924342544064134116998455198981514} a^{13} - \frac{1511307735743015807575423251591530548224475316132213428017892522633465549}{59959111348423492987182391462674349523745924342544064134116998455198981514} a^{12} + \frac{11324541901455214509607785414658613692621463687989836618152895800138857759}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{11} - \frac{13985569635609611133632851574725248300565576887446343293621070188608329445}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{10} + \frac{40663505121832291154029905677608263986157412464887990689141386817049104226}{89938667022635239480773587194011524285618886513816096201175497682798472271} a^{9} + \frac{37564039798497772171609084049877684512545230045416542529408073670797646910}{89938667022635239480773587194011524285618886513816096201175497682798472271} a^{8} - \frac{35850382889564123571388720497564267670628358830426404529408508885291864167}{179877334045270478961547174388023048571237773027632192402350995365596944542} a^{7} + \frac{25915172782618235766585614303920895118677869549606373955772902388159787426}{89938667022635239480773587194011524285618886513816096201175497682798472271} a^{6} - \frac{4271410041348620635531723094923113424143139753274435993288513515221161078}{89938667022635239480773587194011524285618886513816096201175497682798472271} a^{5} + \frac{343832735089151144076526683853947271861684885781081950694319245109180625}{29979555674211746493591195731337174761872962171272032067058499227599490757} a^{4} + \frac{7567580037405303672876487826585183597316360707120159215661884505433635603}{29979555674211746493591195731337174761872962171272032067058499227599490757} a^{3} + \frac{39515906521342688541078887818528295174222305503153003757715941235770067071}{89938667022635239480773587194011524285618886513816096201175497682798472271} a^{2} - \frac{7131113080501317680074682857481737467047134617735141918409521982379795097}{29979555674211746493591195731337174761872962171272032067058499227599490757} a - \frac{41436833249315184842671067039359006691383630730994055997060250099256370017}{89938667022635239480773587194011524285618886513816096201175497682798472271}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1949267111.5946145 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-15}, \sqrt{-21})\), 5.1.162000.1, 10.2.141146530560000000.1, 10.0.393660000000.1, 10.0.84687918336000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.5 | $x^{10} - 2 x^{5} - 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| 3 | Data not computed | ||||||
| $5$ | 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.2 | $x^{2} + 10$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |