Normalized defining polynomial
\( x^{20} - 10 x^{19} + 49 x^{18} - 156 x^{17} + 486 x^{16} - 1644 x^{15} + 4596 x^{14} - 9318 x^{13} + 5145 x^{12} + 36236 x^{11} - 83405 x^{10} + 2264 x^{9} + 140118 x^{8} - 45090 x^{7} - 2028876 x^{6} + 5720946 x^{5} + 32556156 x^{4} - 74437464 x^{3} - 110117546 x^{2} + 148257512 x + 174972106 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(179301087802125125222400000000000000=2^{28}\cdot 3^{18}\cdot 5^{14}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{105} a^{12} - \frac{2}{35} a^{11} - \frac{10}{21} a^{9} + \frac{1}{5} a^{8} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{11}{35} a^{5} - \frac{17}{35} a^{4} + \frac{7}{15} a^{3} + \frac{11}{35} a^{2} + \frac{1}{5} a + \frac{46}{105}$, $\frac{1}{105} a^{13} - \frac{1}{105} a^{11} - \frac{1}{7} a^{10} + \frac{12}{35} a^{9} - \frac{13}{35} a^{8} + \frac{2}{7} a^{7} - \frac{1}{35} a^{6} - \frac{13}{35} a^{5} - \frac{47}{105} a^{4} + \frac{4}{35} a^{3} + \frac{44}{105} a^{2} - \frac{1}{35} a - \frac{13}{35}$, $\frac{1}{105} a^{14} + \frac{2}{15} a^{11} + \frac{1}{105} a^{10} + \frac{17}{35} a^{9} + \frac{17}{35} a^{8} + \frac{2}{5} a^{7} + \frac{12}{35} a^{6} + \frac{5}{21} a^{5} - \frac{13}{35} a^{4} - \frac{4}{35} a^{3} - \frac{8}{21} a^{2} + \frac{52}{105} a - \frac{8}{35}$, $\frac{1}{105} a^{15} + \frac{1}{7} a^{11} + \frac{16}{105} a^{10} + \frac{17}{35} a^{9} - \frac{2}{5} a^{8} + \frac{12}{35} a^{7} + \frac{5}{21} a^{6} + \frac{1}{35} a^{5} - \frac{11}{35} a^{4} + \frac{3}{35} a^{3} + \frac{3}{7} a^{2} - \frac{38}{105} a + \frac{1}{5}$, $\frac{1}{525} a^{16} + \frac{2}{525} a^{15} - \frac{1}{525} a^{12} + \frac{37}{525} a^{11} + \frac{13}{525} a^{10} + \frac{32}{105} a^{9} - \frac{23}{175} a^{8} + \frac{16}{75} a^{7} + \frac{113}{525} a^{6} - \frac{43}{175} a^{5} + \frac{8}{175} a^{4} + \frac{32}{75} a^{3} - \frac{8}{75} a^{2} - \frac{41}{525} a - \frac{134}{525}$, $\frac{1}{525} a^{17} + \frac{1}{525} a^{15} - \frac{1}{525} a^{13} - \frac{1}{525} a^{12} + \frac{79}{525} a^{11} + \frac{13}{175} a^{10} - \frac{78}{175} a^{9} + \frac{10}{21} a^{8} - \frac{52}{175} a^{7} - \frac{16}{105} a^{6} + \frac{2}{25} a^{5} - \frac{7}{75} a^{4} + \frac{206}{525} a^{3} - \frac{149}{525} a^{2} - \frac{69}{175} a + \frac{36}{175}$, $\frac{1}{159777045231594508209732547125} a^{18} - \frac{3}{53259015077198169403244182375} a^{17} - \frac{15613169052328862105877353}{22825292175942072601390363875} a^{16} - \frac{647348678132388562163558953}{159777045231594508209732547125} a^{15} - \frac{28327437076683514230483107}{12290541940891885246902503625} a^{14} - \frac{42278441292434334464947699}{12290541940891885246902503625} a^{13} - \frac{30747248741920915896447681}{10651803015439633880648836475} a^{12} + \frac{4391398743006969812935792533}{53259015077198169403244182375} a^{11} + \frac{12057192177955106525046966614}{159777045231594508209732547125} a^{10} - \frac{12263582920307070291821096524}{159777045231594508209732547125} a^{9} + \frac{4186258467241822655574574734}{53259015077198169403244182375} a^{8} + \frac{2872692157867127728928358191}{31955409046318901641946509425} a^{7} + \frac{36719922008630312407351059596}{159777045231594508209732547125} a^{6} - \frac{29408173182848033881309575284}{159777045231594508209732547125} a^{5} - \frac{6516705007881462300000520033}{22825292175942072601390363875} a^{4} - \frac{25236790718841803906596251947}{53259015077198169403244182375} a^{3} - \frac{14828789457011898753876639963}{53259015077198169403244182375} a^{2} + \frac{14229580936248710833885720178}{159777045231594508209732547125} a - \frac{20029564154797868215137762959}{159777045231594508209732547125}$, $\frac{1}{2395940995750596700910766073191709875} a^{19} + \frac{7497754}{2395940995750596700910766073191709875} a^{18} + \frac{473792668924742147178862007764529}{798646998583532233636922024397236625} a^{17} - \frac{165768573772498660160947734103114}{266215666194510744545640674799078875} a^{16} - \frac{15987679711907012494462416807373}{4095625633761703762240625766139675} a^{15} - \frac{35435127208154663917653478081381}{12286876901285111286721877298419025} a^{14} + \frac{360982879710453916073692527452181}{266215666194510744545640674799078875} a^{13} - \frac{712984801122856636936250319144744}{266215666194510744545640674799078875} a^{12} + \frac{73464620473963988052165722843320567}{798646998583532233636922024397236625} a^{11} - \frac{311998048404679103485151564627576767}{2395940995750596700910766073191709875} a^{10} + \frac{70909108278147329536966765713160753}{479188199150119340182153214638341975} a^{9} - \frac{17328323224937211933327524774765314}{114092428369076033376703146342462375} a^{8} - \frac{13516226509382875622174678799687403}{38030809456358677792234382114154125} a^{7} - \frac{129573231595174843436047144329413704}{266215666194510744545640674799078875} a^{6} - \frac{203028528341654389299635802023019341}{798646998583532233636922024397236625} a^{5} + \frac{77973239417626646799032531873485984}{266215666194510744545640674799078875} a^{4} - \frac{11484255936137488313831742216795344}{38030809456358677792234382114154125} a^{3} + \frac{152876202254409065222810442163983007}{798646998583532233636922024397236625} a^{2} + \frac{156398706681850061666953906076709041}{479188199150119340182153214638341975} a + \frac{21779171003797513294400026805353666}{184303153519276669300828159476285375}$
Class group and class number
$C_{2}\times C_{4}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2178006063.441225 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{7}, \sqrt{-15})\), 5.1.162000.1, 10.0.393660000000.1, 10.2.28229306112000000.1, 10.0.423439591680000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ |
| 2.10.14.1 | $x^{10} - 2 x^{6} + 2 x^{5} + 2 x^{2} + 2$ | $10$ | $1$ | $14$ | $F_{5}\times C_2$ | $[2]_{5}^{4}$ | |
| $3$ | 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ |
| 3.10.9.1 | $x^{10} - 3$ | $10$ | $1$ | $9$ | $F_{5}\times C_2$ | $[\ ]_{10}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |