Normalized defining polynomial
\( x^{20} - 6 x^{19} - 10 x^{18} + 104 x^{17} + 34 x^{16} - 876 x^{15} + 466 x^{14} + 2726 x^{13} - 57 x^{12} - 8874 x^{11} + 5254 x^{10} + 820 x^{9} + 9099 x^{8} - 7864 x^{7} + 23172 x^{6} - 27568 x^{5} + 44861 x^{4} - 60510 x^{3} + 126562 x^{2} - 54390 x + 58471 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1791006002586548906938780335646468734976=2^{30}\cdot 7^{14}\cdot 199^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.76$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 199$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{7} a^{13} - \frac{1}{7} a^{12} + \frac{2}{7} a^{11} + \frac{3}{7} a^{10} - \frac{3}{7} a^{9} - \frac{1}{7} a^{8} + \frac{3}{7} a^{7} - \frac{3}{7} a^{6} - \frac{1}{7} a^{5} + \frac{1}{7} a^{4} - \frac{1}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{14} + \frac{1}{7} a^{12} - \frac{2}{7} a^{11} + \frac{3}{7} a^{9} + \frac{2}{7} a^{8} + \frac{3}{7} a^{6} + \frac{1}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{15} - \frac{1}{7} a^{12} - \frac{2}{7} a^{11} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} + \frac{3}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{7} a^{3} - \frac{2}{7} a^{2}$, $\frac{1}{7} a^{16} - \frac{3}{7} a^{12} + \frac{2}{7} a^{11} + \frac{1}{7} a^{10} - \frac{2}{7} a^{9} - \frac{1}{7} a^{8} - \frac{1}{7} a^{7} - \frac{2}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{3}{7} a^{3} + \frac{2}{7} a^{2}$, $\frac{1}{7} a^{17} - \frac{1}{7} a^{12} - \frac{3}{7} a^{9} + \frac{3}{7} a^{8} - \frac{3}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2}$, $\frac{1}{91} a^{18} + \frac{6}{91} a^{17} + \frac{3}{91} a^{16} - \frac{6}{91} a^{15} + \frac{6}{91} a^{14} + \frac{5}{91} a^{13} - \frac{23}{91} a^{12} - \frac{3}{91} a^{11} - \frac{10}{91} a^{10} - \frac{16}{91} a^{9} + \frac{36}{91} a^{8} + \frac{12}{91} a^{7} + \frac{8}{91} a^{6} + \frac{2}{7} a^{5} - \frac{11}{91} a^{4} + \frac{29}{91} a^{3} - \frac{6}{91} a^{2} + \frac{6}{13} a + \frac{1}{13}$, $\frac{1}{2465283208072135442757408382514138449897604429} a^{19} - \frac{1178738245931595728806306265841708702722488}{352183315438876491822486911787734064271086347} a^{18} - \frac{115184614250684064227820969640976482569322326}{2465283208072135442757408382514138449897604429} a^{17} - \frac{139102257045184267836353731204587763704445888}{2465283208072135442757408382514138449897604429} a^{16} + \frac{62590280276573573276442841901160458081157953}{2465283208072135442757408382514138449897604429} a^{15} - \frac{6163796472726358212854326140238130318696438}{189637169851702726365954490962626034607508033} a^{14} - \frac{168824148763886203273711672333557540200568868}{2465283208072135442757408382514138449897604429} a^{13} + \frac{714600171709458919226712311570577811867909997}{2465283208072135442757408382514138449897604429} a^{12} - \frac{322488139508328645059366225900110541293682185}{2465283208072135442757408382514138449897604429} a^{11} + \frac{43773965110965698292486169767020554130055548}{2465283208072135442757408382514138449897604429} a^{10} - \frac{110529389189590201802343560365151795884688327}{352183315438876491822486911787734064271086347} a^{9} + \frac{223041134482251375925967617535554549976128861}{2465283208072135442757408382514138449897604429} a^{8} + \frac{881535117955513305641427787255661128765476079}{2465283208072135442757408382514138449897604429} a^{7} - \frac{1017765543742427715567015050774032628785260528}{2465283208072135442757408382514138449897604429} a^{6} - \frac{991743128754278784041926643600204309341402447}{2465283208072135442757408382514138449897604429} a^{5} - \frac{714014625657237243880698115597029660060072804}{2465283208072135442757408382514138449897604429} a^{4} - \frac{144637026163056622865745661906759877394699719}{2465283208072135442757408382514138449897604429} a^{3} + \frac{807092338194157265443234961612193573862124876}{2465283208072135442757408382514138449897604429} a^{2} - \frac{86629055154933294283348570745234481628571736}{352183315438876491822486911787734064271086347} a + \frac{156229639770909003919745169646692225955987190}{352183315438876491822486911787734064271086347}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 483814559041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_5\times A_4$ (as 20T37):
| A solvable group of order 120 |
| The 16 conjugacy class representatives for $D_5\times A_4$ |
| Character table for $D_5\times A_4$ |
Intermediate fields
| 4.0.3136.1, 5.5.1940449.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $15{,}\,{\href{/LocalNumberField/3.5.0.1}{5} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | $15{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }$ | $15{,}\,{\href{/LocalNumberField/23.5.0.1}{5} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{5}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{5}$ | $15{,}\,{\href{/LocalNumberField/59.5.0.1}{5} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 7.6.5.5 | $x^{6} + 56$ | $6$ | $1$ | $5$ | $C_6$ | $[\ ]_{6}$ | |
| 199 | Data not computed | ||||||