Properties

Label 20.0.17855749972...8125.1
Degree $20$
Signature $[0, 10]$
Discriminant $5^{12}\cdot 53^{15}$
Root discriminant $51.59$
Ramified primes $5, 53$
Class number $5$ (GRH)
Class group $[5]$ (GRH)
Galois group $C_4\times F_5$ (as 20T20)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![371293, 0, 0, 0, 0, 44412, 0, 0, 0, 0, 1538, 0, 0, 0, 0, -12, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - 12*x^15 + 1538*x^10 + 44412*x^5 + 371293)
 
gp: K = bnfinit(x^20 - 12*x^15 + 1538*x^10 + 44412*x^5 + 371293, 1)
 

Normalized defining polynomial

\( x^{20} - 12 x^{15} + 1538 x^{10} + 44412 x^{5} + 371293 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17855749972907377862423866455078125=5^{12}\cdot 53^{15}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.59$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 53$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4}$, $\frac{1}{24} a^{10} - \frac{5}{24}$, $\frac{1}{24} a^{11} - \frac{5}{24} a$, $\frac{1}{24} a^{12} - \frac{5}{24} a^{2}$, $\frac{1}{24} a^{13} - \frac{5}{24} a^{3}$, $\frac{1}{24} a^{14} - \frac{5}{24} a^{4}$, $\frac{1}{414384} a^{15} + \frac{4339}{414384} a^{10} - \frac{8477}{414384} a^{5} + \frac{41161}{414384}$, $\frac{1}{26934960} a^{16} - \frac{1}{2071920} a^{15} + \frac{1}{60} a^{14} - \frac{1}{60} a^{13} + \frac{1}{120} a^{12} + \frac{263329}{26934960} a^{11} - \frac{4339}{2071920} a^{10} + \frac{1}{10} a^{9} + \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{820291}{26934960} a^{6} - \frac{405907}{2071920} a^{5} + \frac{5}{12} a^{4} + \frac{23}{60} a^{3} + \frac{11}{24} a^{2} - \frac{7469549}{26934960} a + \frac{787607}{2071920}$, $\frac{1}{350154480} a^{17} - \frac{1}{1035960} a^{15} - \frac{1}{60} a^{14} + \frac{4303573}{350154480} a^{12} + \frac{539}{25899} a^{10} - \frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{4566701}{350154480} a^{7} - \frac{1}{10} a^{6} + \frac{215669}{1035960} a^{5} - \frac{19}{60} a^{4} - \frac{1}{5} a^{3} - \frac{135410609}{350154480} a^{2} + \frac{3}{10} a + \frac{4567}{129495}$, $\frac{1}{4552008240} a^{18} - \frac{1}{2071920} a^{15} - \frac{1}{120} a^{14} - \frac{6142375}{910401648} a^{13} + \frac{1}{60} a^{12} + \frac{1}{120} a^{11} - \frac{12957}{690640} a^{10} - \frac{1}{5} a^{9} + \frac{380603227}{4552008240} a^{8} - \frac{39743}{414384} a^{5} - \frac{43}{120} a^{4} + \frac{449127971}{910401648} a^{3} - \frac{29}{60} a^{2} + \frac{43}{120} a - \frac{301487}{690640}$, $\frac{1}{59176107120} a^{19} + \frac{1}{1035960} a^{15} - \frac{941113523}{59176107120} a^{14} + \frac{1}{60} a^{13} - \frac{1}{60} a^{12} + \frac{1}{120} a^{11} + \frac{4339}{1035960} a^{10} - \frac{2805802541}{59176107120} a^{9} + \frac{1}{10} a^{8} + \frac{1}{10} a^{7} + \frac{1}{10} a^{6} - \frac{215669}{1035960} a^{5} - \frac{4558081093}{11835221424} a^{4} + \frac{5}{12} a^{3} + \frac{23}{60} a^{2} + \frac{11}{24} a + \frac{41161}{1035960}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{5}$, which has order $5$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 149186526.14265528 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_4\times F_5$ (as 20T20):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 80
The 20 conjugacy class representatives for $C_4\times F_5$
Character table for $C_4\times F_5$

Intermediate fields

\(\Q(\sqrt{53}) \), 4.0.148877.1, 5.1.351125.1, 10.2.6534304578125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 20 siblings: data not computed
Degree 40 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ $20$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ R ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
53Data not computed