Normalized defining polynomial
\( x^{20} + 66 x^{16} + 440 x^{14} - 1749 x^{12} + 10340 x^{10} - 11374 x^{8} - 21780 x^{6} + 246961 x^{4} - 350900 x^{2} + 242000 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(177917354031751407392000000000000000=2^{20}\cdot 5^{15}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.88$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{44} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{88} a^{11} - \frac{1}{8} a^{7} + \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{176} a^{12} - \frac{1}{88} a^{10} + \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{176} a^{13} + \frac{1}{16} a^{9} + \frac{3}{16} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{176} a^{14} - \frac{1}{176} a^{10} - \frac{1}{16} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{176} a^{15} - \frac{1}{176} a^{11} - \frac{1}{16} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{41536} a^{16} - \frac{47}{41536} a^{14} - \frac{51}{20768} a^{12} - \frac{103}{41536} a^{10} - \frac{81}{1888} a^{8} - \frac{169}{3776} a^{6} - \frac{721}{3776} a^{4} - \frac{391}{944} a^{2} + \frac{67}{236}$, $\frac{1}{41536} a^{17} - \frac{47}{41536} a^{15} - \frac{51}{20768} a^{13} - \frac{103}{41536} a^{11} - \frac{81}{1888} a^{9} - \frac{169}{3776} a^{7} - \frac{721}{3776} a^{5} - \frac{391}{944} a^{3} + \frac{67}{236} a$, $\frac{1}{15425508949801280} a^{18} - \frac{1287147545}{280463799087296} a^{16} + \frac{1309322656123}{701159497718240} a^{14} + \frac{608536983891}{280463799087296} a^{12} + \frac{1917818307263}{701159497718240} a^{10} - \frac{11450845237705}{280463799087296} a^{8} - \frac{7033951533139}{127483545039680} a^{6} - \frac{1449328826033}{3187088625992} a^{4} + \frac{2980018942931}{7967721564980} a^{2} + \frac{189290957758}{398386078249}$, $\frac{1}{77127544749006400} a^{19} - \frac{257429509}{280463799087296} a^{17} + \frac{9277044221103}{3505797488591200} a^{15} + \frac{3795625609883}{1402318995436480} a^{13} - \frac{549991205247}{318708862599200} a^{11} - \frac{46508820123617}{1402318995436480} a^{9} - \frac{54840280923019}{637417725198400} a^{7} - \frac{923857452141}{7967721564980} a^{5} + \frac{1242987333544}{9959651956225} a^{3} + \frac{155393598753}{796772156498} a$
Class group and class number
$C_{2}\times C_{2}\times C_{10}$, which has order $40$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 196738506.401326 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T9):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.242000.2, 5.1.1830125.1, 10.2.16746787578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $5$ | 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $11$ | 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.5 | $x^{10} - 8019$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |