Normalized defining polynomial
\( x^{20} - 7 x^{19} + 15 x^{18} + 5 x^{17} - 80 x^{16} + 153 x^{15} - 39 x^{14} - 414 x^{13} + 780 x^{12} - 135 x^{11} - 1228 x^{10} + 1384 x^{9} + 143 x^{8} - 1178 x^{7} + 620 x^{6} + 70 x^{5} - 73 x^{4} - 19 x^{3} - 2 x^{2} + 4 x + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17780219642021514892578125=5^{15}\cdot 17^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{18} + \frac{1}{10} a^{17} + \frac{1}{5} a^{16} - \frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{10} a^{12} - \frac{2}{5} a^{11} + \frac{2}{5} a^{10} + \frac{1}{10} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{2} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5} a + \frac{1}{10}$, $\frac{1}{1839637222550} a^{19} - \frac{85281536033}{1839637222550} a^{18} + \frac{444039828143}{1839637222550} a^{17} - \frac{78549601509}{919818611275} a^{16} - \frac{388001910347}{1839637222550} a^{15} - \frac{4856449643}{73585488902} a^{14} + \frac{159678567173}{919818611275} a^{13} + \frac{20694200553}{183963722255} a^{12} + \frac{83948056181}{367927444510} a^{11} - \frac{23417085557}{183963722255} a^{10} + \frac{365210027536}{919818611275} a^{9} + \frac{723564700807}{1839637222550} a^{8} + \frac{244839281528}{919818611275} a^{7} - \frac{361088779732}{919818611275} a^{6} - \frac{29380060091}{1839637222550} a^{5} - \frac{23359070069}{1839637222550} a^{4} - \frac{294451483219}{1839637222550} a^{3} + \frac{7341750226}{183963722255} a^{2} + \frac{421039299124}{919818611275} a + \frac{761147607821}{1839637222550}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1114810435414}{919818611275} a^{19} - \frac{15248690824899}{1839637222550} a^{18} + \frac{32650210486729}{1839637222550} a^{17} + \frac{3311056976773}{919818611275} a^{16} - \frac{81358163062233}{919818611275} a^{15} + \frac{6724829457233}{36792744451} a^{14} - \frac{68483221780881}{919818611275} a^{13} - \frac{160080799070407}{367927444510} a^{12} + \frac{167178623428114}{183963722255} a^{11} - \frac{60060416875441}{183963722255} a^{10} - \frac{2156377529836559}{1839637222550} a^{9} + \frac{1541203952074473}{919818611275} a^{8} - \frac{301192507647266}{919818611275} a^{7} - \frac{1912973610766267}{1839637222550} a^{6} + \frac{869227104905101}{919818611275} a^{5} - \frac{234968235852591}{919818611275} a^{4} - \frac{9591839450691}{919818611275} a^{3} - \frac{1859344409529}{367927444510} a^{2} + \frac{2797540294747}{919818611275} a + \frac{7056452069613}{1839637222550} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 171082.874915 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times F_5$ (as 20T20):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_4\times F_5$ |
| Character table for $C_4\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 5.1.614125.1, 10.2.1885747578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | $20$ | R | $20$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||