Properties

Label 20.0.17729933579...2224.1
Degree $20$
Signature $[0, 10]$
Discriminant $2^{10}\cdot 11^{5}\cdot 401^{10}$
Root discriminant $51.57$
Ramified primes $2, 11, 401$
Class number $382$ (GRH)
Class group $[382]$ (GRH)
Galois group $C_5:D_4$ (as 20T11)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![842147, 5680831, 13596529, 8858817, 10772482, 1592904, 682047, 888791, 472533, 223263, 105429, 15488, 16293, 3588, 2069, 770, 90, 65, 17, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^20 - x^19 + 17*x^18 + 65*x^17 + 90*x^16 + 770*x^15 + 2069*x^14 + 3588*x^13 + 16293*x^12 + 15488*x^11 + 105429*x^10 + 223263*x^9 + 472533*x^8 + 888791*x^7 + 682047*x^6 + 1592904*x^5 + 10772482*x^4 + 8858817*x^3 + 13596529*x^2 + 5680831*x + 842147)
 
gp: K = bnfinit(x^20 - x^19 + 17*x^18 + 65*x^17 + 90*x^16 + 770*x^15 + 2069*x^14 + 3588*x^13 + 16293*x^12 + 15488*x^11 + 105429*x^10 + 223263*x^9 + 472533*x^8 + 888791*x^7 + 682047*x^6 + 1592904*x^5 + 10772482*x^4 + 8858817*x^3 + 13596529*x^2 + 5680831*x + 842147, 1)
 

Normalized defining polynomial

\( x^{20} - x^{19} + 17 x^{18} + 65 x^{17} + 90 x^{16} + 770 x^{15} + 2069 x^{14} + 3588 x^{13} + 16293 x^{12} + 15488 x^{11} + 105429 x^{10} + 223263 x^{9} + 472533 x^{8} + 888791 x^{7} + 682047 x^{6} + 1592904 x^{5} + 10772482 x^{4} + 8858817 x^{3} + 13596529 x^{2} + 5680831 x + 842147 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $20$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 10]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(17729933579419947102912400962612224=2^{10}\cdot 11^{5}\cdot 401^{10}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $51.57$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11, 401$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} + \frac{1}{19} a^{17} - \frac{7}{19} a^{16} + \frac{6}{19} a^{15} - \frac{1}{19} a^{14} + \frac{4}{19} a^{13} - \frac{6}{19} a^{12} - \frac{5}{19} a^{11} + \frac{4}{19} a^{10} + \frac{8}{19} a^{9} + \frac{5}{19} a^{8} + \frac{5}{19} a^{7} - \frac{3}{19} a^{6} + \frac{6}{19} a^{5} - \frac{1}{19} a^{4} - \frac{5}{19} a^{3} - \frac{8}{19} a^{2} - \frac{9}{19} a - \frac{4}{19}$, $\frac{1}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{19} - \frac{40486065894390762505443610852512424388852020611210766811196129061712955}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{18} - \frac{2395024369184011653159900926859697558025738571679169003046909616931533483}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{17} + \frac{2412083887548292339664764766772362910683090221557150850792750845951257564}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{16} + \frac{191587824371303685995657186425267738717894265755823266795860871841871554}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{15} + \frac{1759961776126705538378815205267610910537631704514461426435432418107235235}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{14} - \frac{1509369477575362842520170240495476488629787790535786125160805568115826916}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{13} + \frac{734867753444279050247710405198303105107419705518598565580719262686781027}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{12} + \frac{765241741286907497382112606609625830599005630643820863383645987437624329}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{11} - \frac{1117064553624276445716213836953808963971162108191631265898819524718816417}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{10} - \frac{1359392198877689750700438529911879777051375316570850041053573054032246020}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{9} - \frac{1729996325839327300107865618811361021934000625972186706746609678690993459}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{8} + \frac{2133951762722537258037626898976498741713032111417622807834788798924811577}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{7} - \frac{2178361658037015285892237408385531728745396986951461579225588625938410536}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{6} + \frac{965181253622743455620594437669094178133972554247972276932458530971360765}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{5} - \frac{14120788652953107500219411327447443665598370689892687443712345099222380}{291281206810552089559454274800588546276928724512844106714230460712698743} a^{4} - \frac{957663532884607601249860780656414890690118343755839351922048360631935934}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{3} + \frac{464178211533232210706984909021604880128906721887178784810343836013709837}{5534342929400489701629631221211182379261645765744038027570378753541276117} a^{2} + \frac{1074487084282527775255196458348574964793871687840871528683234494143059611}{5534342929400489701629631221211182379261645765744038027570378753541276117} a - \frac{1161325623215723520361446086089119337156509864342310347269793004893253545}{5534342929400489701629631221211182379261645765744038027570378753541276117}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{382}$, which has order $382$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $9$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 795087.603907 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_5:D_4$ (as 20T11):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 40
The 13 conjugacy class representatives for $C_5:D_4$
Character table for $C_5:D_4$

Intermediate fields

\(\Q(\sqrt{401}) \), 4.0.7075244.1, 5.5.160801.1 x5, 10.10.10368641602001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 20 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ ${\href{/LocalNumberField/47.10.0.1}{10} }{,}\,{\href{/LocalNumberField/47.5.0.1}{5} }^{2}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{10}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.10.10.7$x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$$2$$5$$10$$C_{10}$$[2]^{5}$
2.10.0.1$x^{10} - x^{3} + 1$$1$$10$$0$$C_{10}$$[\ ]^{10}$
$11$11.5.0.1$x^{5} + x^{2} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
11.5.0.1$x^{5} + x^{2} - x + 5$$1$$5$$0$$C_5$$[\ ]^{5}$
11.10.5.1$x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$$2$$5$$5$$C_{10}$$[\ ]_{2}^{5}$
401Data not computed