Normalized defining polynomial
\( x^{20} - 3 x^{19} + 49 x^{18} - 231 x^{17} + 1502 x^{16} - 7304 x^{15} + 33532 x^{14} - 137685 x^{13} + 515016 x^{12} - 1709342 x^{11} + 5124144 x^{10} - 13137281 x^{9} + 30194239 x^{8} - 57126905 x^{7} + 97213725 x^{6} - 130092378 x^{5} + 155067625 x^{4} - 134835408 x^{3} + 98000344 x^{2} - 43507098 x + 11369359 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1767246164450779958943837335205078125=5^{14}\cdot 6029^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 6029$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{1}{5} a^{10} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{13} - \frac{1}{5} a^{11} + \frac{1}{5} a^{9} - \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{14} - \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{2}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{5} a^{15} - \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{7} + \frac{2}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{17} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a + \frac{2}{5}$, $\frac{1}{3275} a^{18} + \frac{133}{3275} a^{17} - \frac{182}{3275} a^{16} + \frac{16}{655} a^{15} + \frac{9}{655} a^{14} - \frac{159}{3275} a^{13} - \frac{247}{3275} a^{12} + \frac{924}{3275} a^{11} + \frac{1453}{3275} a^{10} + \frac{214}{655} a^{9} - \frac{1393}{3275} a^{8} + \frac{1411}{3275} a^{7} + \frac{907}{3275} a^{6} - \frac{712}{3275} a^{5} + \frac{19}{655} a^{4} - \frac{186}{655} a^{3} + \frac{316}{655} a^{2} + \frac{1087}{3275} a - \frac{9}{25}$, $\frac{1}{24911587955422366171776634872407139525395616268283038859663240413525} a^{19} + \frac{1542505497553985144462622983451704025012635899824505720536843699}{24911587955422366171776634872407139525395616268283038859663240413525} a^{18} - \frac{1810773649957383529493602206815355209821726797683855647960624580454}{24911587955422366171776634872407139525395616268283038859663240413525} a^{17} + \frac{1221098071458804044717692212316423617102448575542187590062535872053}{24911587955422366171776634872407139525395616268283038859663240413525} a^{16} + \frac{327065924381160022421453190288226132807118725292229344703078089836}{4982317591084473234355326974481427905079123253656607771932648082705} a^{15} - \frac{270441574109249379710645083649555851779218911531032009566778307634}{24911587955422366171776634872407139525395616268283038859663240413525} a^{14} - \frac{680031543158912241506200057128348644723463154679309446906633689186}{24911587955422366171776634872407139525395616268283038859663240413525} a^{13} + \frac{1892570216225947782600829466265458670970085134920543192347778392452}{24911587955422366171776634872407139525395616268283038859663240413525} a^{12} + \frac{9771810793200160822972615070655960391521007888939273094158806605572}{24911587955422366171776634872407139525395616268283038859663240413525} a^{11} + \frac{6117256726289279551314259805831805988432915164768535523411940840263}{24911587955422366171776634872407139525395616268283038859663240413525} a^{10} + \frac{4854026798817779186791065189003343311722841592312052765917136329642}{24911587955422366171776634872407139525395616268283038859663240413525} a^{9} + \frac{758642286933823807229228591216997942647974386156587738720728964158}{24911587955422366171776634872407139525395616268283038859663240413525} a^{8} + \frac{58729323075182893260135144524548887724386279283998433455379089268}{24911587955422366171776634872407139525395616268283038859663240413525} a^{7} - \frac{331281563789295592353164215785245390566600991733446576247812346638}{996463518216894646871065394896285581015824650731321554386529616541} a^{6} - \frac{4722307911273592342386371534274865756372943592018670971949397750192}{24911587955422366171776634872407139525395616268283038859663240413525} a^{5} - \frac{2050989570798785448722022918959516758889129318817817333136086901918}{4982317591084473234355326974481427905079123253656607771932648082705} a^{4} - \frac{323006687047485344559640148378608998665388487628965256345801536485}{996463518216894646871065394896285581015824650731321554386529616541} a^{3} + \frac{3229037207794615735340740083051979846796693802177953740457196516922}{24911587955422366171776634872407139525395616268283038859663240413525} a^{2} + \frac{4002973773514734579785070854103626773349492463968074529297227479843}{24911587955422366171776634872407139525395616268283038859663240413525} a - \frac{33556135266592313206713280948871988399543209069966207405831657624}{190164793552842489860890342537459080346531421895290372974528552775}$
Class group and class number
$C_{16350}$, which has order $16350$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 341439.528105 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 480 |
| The 19 conjugacy class representatives for $C_4:S_5$ |
| Character table for $C_4:S_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.150725.1, 5.5.753625.1, 10.10.2839753203125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20$ | $20$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.12.10.1 | $x^{12} + 6 x^{11} + 27 x^{10} + 80 x^{9} + 195 x^{8} + 366 x^{7} + 571 x^{6} + 702 x^{5} + 1005 x^{4} + 1140 x^{3} + 357 x^{2} - 138 x + 44$ | $6$ | $2$ | $10$ | $D_6$ | $[\ ]_{6}^{2}$ | |
| 6029 | Data not computed | ||||||