Normalized defining polynomial
\( x^{20} + 120 x^{18} + 7030 x^{16} - 2 x^{15} + 261280 x^{14} + 170 x^{13} + 6773795 x^{12} + 11580 x^{11} + 127430747 x^{10} + 298470 x^{9} + 1756855370 x^{8} + 3441980 x^{7} + 17501128105 x^{6} + 4691704 x^{5} + 120490616165 x^{4} - 303834980 x^{3} + 517958259535 x^{2} - 2457333470 x + 1057144858799 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(176547030625000000000000000000000000000000=2^{30}\cdot 5^{34}\cdot 7^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $115.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1400=2^{3}\cdot 5^{2}\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1400}(1,·)$, $\chi_{1400}(69,·)$, $\chi_{1400}(449,·)$, $\chi_{1400}(1289,·)$, $\chi_{1400}(909,·)$, $\chi_{1400}(461,·)$, $\chi_{1400}(1301,·)$, $\chi_{1400}(281,·)$, $\chi_{1400}(729,·)$, $\chi_{1400}(349,·)$, $\chi_{1400}(741,·)$, $\chi_{1400}(1121,·)$, $\chi_{1400}(1189,·)$, $\chi_{1400}(561,·)$, $\chi_{1400}(169,·)$, $\chi_{1400}(1009,·)$, $\chi_{1400}(629,·)$, $\chi_{1400}(841,·)$, $\chi_{1400}(1021,·)$, $\chi_{1400}(181,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{19} + \frac{45509000120495153607853922715055986495736759308631982246986035408557269445026205}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{18} + \frac{4384259934163007155973659799805380972214323213023576217836004283120330481992380}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{17} + \frac{21799753466856989309888443956307035891353076566164115162361510680908243608625009}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{16} - \frac{22518019823546954959381408458753923135606556830008871415920515775369763267626862}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{15} + \frac{59047944980520960803185453874164451206858464167165790750548993165506378844717363}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{14} + \frac{25850187405005501994229581067428635269063485124561287153330568627852468727415679}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{13} - \frac{243937934049778739619120994295472586165895242665946099991224883806502752707648}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{12} + \frac{60977453535226450052280466224373398852359660887822382578345326398312119415011486}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{11} - \frac{58469783456438601705657386669533297243174053600288242611015665361754250841451482}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{10} + \frac{25336438776455239381124136830377865238826441763800774259077168005141024334674001}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{9} - \frac{33465725106325302242086890524578244226021107960727299033171547608807654334713994}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{8} - \frac{23407482786970212269231326227102159965122812996323113470034413368714036545537799}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{7} - \frac{2894735609287169584413278300834067487606726924927678025541160124998766322246344}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{6} + \frac{38925548171405131480619086372548658927631426130599893502438834040666637275910303}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{5} - \frac{57855726313145363954610961037981083542702091425207020171310979346764683193536947}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{4} - \frac{47433253897321430270381597880265743110287047988699801247726363858023660915159494}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{3} + \frac{252223392808090906234273298758371105802245625727936408020454661792731787169437}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a^{2} - \frac{24243447674536152356528812109700022981841744362783103748822683749551849246718581}{128550635971304673017338293389361322608923132629420010067773617435488895247745301} a + \frac{29393033236114996583122483034857335370200043597124148314117283939016930000368058}{128550635971304673017338293389361322608923132629420010067773617435488895247745301}$
Class group and class number
$C_{4}\times C_{4}\times C_{44}\times C_{44}\times C_{440}$, which has order $13629440$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 161406.8376411007 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{5}, \sqrt{-14})\), 5.5.390625.1, \(\Q(\zeta_{25})^+\), 10.0.420175000000000000000.3, 10.0.84035000000000000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ |
| 5.10.17.1 | $x^{10} - 5 x^{8} + 5$ | $10$ | $1$ | $17$ | $C_{10}$ | $[2]_{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |