Normalized defining polynomial
\( x^{20} - 8 x^{19} + 170 x^{18} - 1076 x^{17} + 13039 x^{16} - 68434 x^{15} + 600600 x^{14} - 2650522 x^{13} + 18371119 x^{12} - 68079464 x^{11} + 388231353 x^{10} - 1190535180 x^{9} + 5709357517 x^{8} - 14042016534 x^{7} + 57369907328 x^{6} - 106965671572 x^{5} + 375875514806 x^{4} - 475906101396 x^{3} + 1451235311405 x^{2} - 941629298346 x + 2524841438603 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(175984888437863295253314247476641792=2^{30}\cdot 7^{15}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{19} - \frac{140892362831888230969328323363691759732640655471125310371868066367536234554322070419999311828666084}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{18} - \frac{261401454663539620481417055221714262375516004160055930564802954412732292779665049056490390891089940}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{17} - \frac{197284810004051020906462471951493920001920733244455275354739910749610197254250386564076992318198913}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{16} - \frac{218091524962168126702799133776502686111736764461820965458638170599504272982126292760565041558458052}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{15} + \frac{105537671820441275206347581203271600380823948556345664889193252124882106438489172237283161702466135}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{14} - \frac{123558924055108110794325705903116675260138219857352911203742780301033784161137310270835857297210209}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{13} + \frac{124663913464298853252606141574382192223210167662597461289071663750712139219311804396293811501801981}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{12} - \frac{116794008432007157753192234110026272339411081395878245446516552678850321622432511564008044570829393}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{11} - \frac{270647814625610190834080180765853684557060283441360740779207530580798936824833348888506232335745337}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{10} + \frac{164331281929119596757616011151409563738462022078484057563397370514911656556194202860921277773653116}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{9} + \frac{196173115832693611028158500049725647955320048111292878464532503592717451658551059351893373714244356}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{8} - \frac{243923134299324452513330270116426813794539586416433639320153741958699044763758989622180514258094707}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{7} + \frac{310295810079886806318270009938680716210064925676701683913657879574543946229593005481098669260056863}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{6} - \frac{272667129992085354778706847367980102251323229256126744202671199833515413704148831867731215845033031}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{5} - \frac{150272478711384961293713713182211797430737792071135354385112083119107134955961656318002245512549533}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{4} + \frac{336496685219285833113112709399167993619228915640878565002236573812982330136876189912152050851014770}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{3} + \frac{245327665407486929309653978193267669367532014656210273603106398756753252531347385273722777170230304}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a^{2} - \frac{215696224019247445005952499096469171527005733252485390853510691384065154632242842341247165373264437}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209} a + \frac{199903355981522340050475817847704124345181285625133302643183567991025408663299428473204962196921362}{675908593370681482232221125953624194825386949652985534558355828981488873594910330030267708181474209}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.241472.2, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.13 | $x^{10} - 2 x^{8} - 4 x^{6} - 48 x^{2} - 96$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.9 | $x^{10} - 6 x^{8} - 24 x^{6} + 80 x^{4} + 336 x^{2} + 33056$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ |
| 11.5.4.3 | $x^{5} + 33$ | $5$ | $1$ | $4$ | $C_5$ | $[\ ]_{5}$ | |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |