Normalized defining polynomial
\( x^{20} - 6 x^{19} - 117 x^{18} + 634 x^{17} + 7277 x^{16} - 34000 x^{15} - 299188 x^{14} + 1164480 x^{13} + 8847515 x^{12} - 27555888 x^{11} - 194166885 x^{10} + 458406564 x^{9} + 3167235334 x^{8} - 5238733956 x^{7} - 37554595669 x^{6} + 38600167906 x^{5} + 306909341114 x^{4} - 157170563398 x^{3} - 1559801944752 x^{2} + 222113646576 x + 3806977113521 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(175984888437863295253314247476641792=2^{30}\cdot 7^{15}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $57.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{19} + \frac{448176285423238472737498766625883113708827548017829151970691697831108138771921660585203570547260}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{18} - \frac{321266424478952918423073808807472773270819378476007319605079245513699630404445637759060941185884}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{17} + \frac{52058601704261801872756632050588764159304243088036308010670367928863828933012492618076724746531}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{16} + \frac{1447692057573693137681712229331212073789626309853815173774011509478607538799174253643447904876735}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{15} - \frac{1245842267745814593507012248015097118546933107903302550406844734643558073480115715488062536759388}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{14} + \frac{326625270730304673095534109164068516634476158248206176889752497615690023513358351901393492720463}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{13} - \frac{103345762079643683459628476909471567215645760943865230513847293571469046462425547480331205562333}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{12} + \frac{475825734832380449800126871256107805499071274995481814395419546749508019130617691306734618951670}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{11} + \frac{2446490210579669525266616264320892493436341320250346428864802821164078841099457969781539432484}{6658482503899511924637578819849824894349440056814667778726353143059798619185014163197692021529} a^{10} - \frac{39676703601214737547631834740364592492602182778874881027401684537913466144679470056605671668332}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{9} + \frac{83023814362597835753111724636576036864913308267248358790955258676397957480629471388132772678604}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{8} + \frac{1451848821337715899115377178895759368117420878530721764799834922053183135669147963078893780873164}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{7} + \frac{1146246391705645457838250961770395914600813213253672660544933106656894119460608987740901392552403}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{6} - \frac{290436159833402690436513585637512656362495922478394677648979170474636552201213767291872482678854}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{5} - \frac{745793876917816194960458882955605670819132822006170151067653651931851116919226668801277030178869}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{4} + \frac{1037223897259377403086950010858908283915965703972836126437188338999095977361043563574390839037953}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{3} + \frac{836824370520035170279045180549592673476063150644098496434754424339088443496690592451305600323340}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a^{2} - \frac{487017604761034759209316798883098571127488482047817048078813158558147987125391351790951327552191}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231} a - \frac{853390281463068208711754308705935737847630641776312956568479098244934544469913100936456859954799}{2923073819211885734915897101914073128619404184941639154860869029803251593822221217643786797451231}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.241472.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{10}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.15.5 | $x^{10} + 14 x^{8} + 40 x^{6} - 144 x^{4} - 432 x^{2} + 33632$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ |
| 2.10.15.1 | $x^{10} + 2 x^{8} - 4 x^{6} + 16 x^{2} - 32$ | $2$ | $5$ | $15$ | $C_{10}$ | $[3]^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |