Normalized defining polynomial
\( x^{20} - 9 x^{19} + 43 x^{18} - 133 x^{17} + 293 x^{16} - 525 x^{15} + 893 x^{14} - 1457 x^{13} + 2102 x^{12} - 2770 x^{11} + 3616 x^{10} - 4338 x^{9} + 4157 x^{8} - 3013 x^{7} + 1702 x^{6} - 747 x^{5} + 166 x^{4} + 36 x^{3} + 32 x^{2} - 80 x + 32 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1759014386056767111350986161=3^{8}\cdot 401^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 401$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{16} - \frac{1}{6} a^{15} - \frac{1}{6} a^{14} - \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{2} a^{10} + \frac{1}{6} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} + \frac{1}{6} a$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{16} - \frac{1}{12} a^{15} - \frac{1}{12} a^{14} + \frac{5}{12} a^{13} - \frac{5}{12} a^{12} - \frac{1}{4} a^{11} - \frac{5}{12} a^{10} - \frac{1}{2} a^{9} + \frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{5}{12} a^{4} - \frac{1}{2} a^{3} + \frac{1}{12} a^{2} - \frac{1}{2} a$, $\frac{1}{1992} a^{18} + \frac{25}{664} a^{17} - \frac{23}{664} a^{16} - \frac{39}{664} a^{15} - \frac{35}{1992} a^{14} - \frac{87}{664} a^{13} + \frac{205}{1992} a^{12} + \frac{743}{1992} a^{11} - \frac{149}{996} a^{10} - \frac{247}{996} a^{9} - \frac{31}{249} a^{8} + \frac{155}{996} a^{7} + \frac{71}{664} a^{6} + \frac{189}{664} a^{5} - \frac{63}{332} a^{4} - \frac{277}{664} a^{3} + \frac{109}{996} a^{2} - \frac{59}{249} a - \frac{67}{249}$, $\frac{1}{56725279539304272} a^{19} - \frac{2593601285403}{18908426513101424} a^{18} - \frac{131517172248745}{56725279539304272} a^{17} - \frac{1876829516645041}{56725279539304272} a^{16} - \frac{209120805001409}{1454494347161648} a^{15} + \frac{2327284266290445}{18908426513101424} a^{14} + \frac{10644646760951033}{56725279539304272} a^{13} + \frac{19491208500406835}{56725279539304272} a^{12} + \frac{1817213763976371}{9454213256550712} a^{11} + \frac{8748872578535917}{28362639769652136} a^{10} - \frac{1770610973298835}{7090659942413034} a^{9} + \frac{317566849292689}{9454213256550712} a^{8} - \frac{14080178203132339}{56725279539304272} a^{7} - \frac{3229224656053157}{56725279539304272} a^{6} + \frac{3381794491492139}{9454213256550712} a^{5} - \frac{26618239103068367}{56725279539304272} a^{4} + \frac{3369051399498763}{28362639769652136} a^{3} - \frac{843954194227}{6571510604646} a^{2} + \frac{1008226401858699}{2363553314137678} a - \frac{262575187935147}{1181776657068839}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 110300.954595 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4:D_5$ (as 20T38):
| A solvable group of order 160 |
| The 10 conjugacy class representatives for $C_2^4:D_5$ |
| Character table for $C_2^4:D_5$ |
Intermediate fields
| 5.5.160801.1, 10.6.2094413889681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 32 sibling: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 401 | Data not computed | ||||||