Normalized defining polynomial
\( x^{20} - 4 x^{19} + 12 x^{18} - 24 x^{17} + 53 x^{16} - 36 x^{15} + 204 x^{14} - 208 x^{13} - 157 x^{12} - 740 x^{11} + 3668 x^{10} + 24 x^{9} + 7427 x^{8} - 19948 x^{7} + 12100 x^{6} - 15248 x^{5} + 54648 x^{4} - 49864 x^{3} + 21840 x^{2} - 49248 x + 36524 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17530598928152643195807706208272384=2^{26}\cdot 13^{7}\cdot 457^{7}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.55$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 457$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5}$, $\frac{1}{4} a^{8} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{10} - \frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{3}{16} a^{7} + \frac{3}{16} a^{6} - \frac{1}{16} a^{5} + \frac{7}{16} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{5} - \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{3}{8}$, $\frac{1}{16} a^{13} - \frac{3}{16} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{16} a^{14} - \frac{3}{16} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{15} - \frac{3}{16} a^{7} - \frac{1}{4} a^{6} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{16} - \frac{1}{8} a^{9} + \frac{1}{32} a^{8} + \frac{1}{8} a^{7} + \frac{3}{8} a^{5} + \frac{3}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{32} a^{17} + \frac{1}{32} a^{9} - \frac{1}{4} a^{7} - \frac{5}{16} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{128} a^{18} - \frac{1}{64} a^{17} - \frac{1}{128} a^{16} - \frac{1}{64} a^{14} - \frac{1}{64} a^{12} - \frac{1}{32} a^{11} - \frac{3}{128} a^{10} - \frac{3}{64} a^{9} + \frac{3}{128} a^{8} + \frac{7}{32} a^{7} - \frac{1}{4} a^{6} - \frac{15}{32} a^{4} - \frac{1}{16} a^{3} - \frac{11}{32} a^{2} + \frac{3}{16} a - \frac{5}{32}$, $\frac{1}{46281289221806690135477095400813312} a^{19} - \frac{145784227381765998208234787319533}{46281289221806690135477095400813312} a^{18} - \frac{137870400786295176011894952748635}{46281289221806690135477095400813312} a^{17} - \frac{645619678091309775496402550974365}{46281289221806690135477095400813312} a^{16} - \frac{404186627871478238354627418150309}{23140644610903345067738547700406656} a^{15} - \frac{552194940704921957577898767880349}{23140644610903345067738547700406656} a^{14} + \frac{708212394718749349887076226116607}{23140644610903345067738547700406656} a^{13} - \frac{50003151799169444307204979205439}{23140644610903345067738547700406656} a^{12} + \frac{687752133357336609706606135391305}{46281289221806690135477095400813312} a^{11} - \frac{1455601600838344999361782987937477}{46281289221806690135477095400813312} a^{10} + \frac{2917263462162764818120762855156949}{46281289221806690135477095400813312} a^{9} + \frac{5761342717225016041942323950206899}{46281289221806690135477095400813312} a^{8} - \frac{1181016715310813055500511031885207}{11570322305451672533869273850203328} a^{7} + \frac{408183737089170434484605184253087}{2892580576362918133467318462550832} a^{6} + \frac{1184345311100455341566744959980857}{11570322305451672533869273850203328} a^{5} + \frac{1629331118482266848801907448931115}{11570322305451672533869273850203328} a^{4} - \frac{2578992139931651573449467246636841}{11570322305451672533869273850203328} a^{3} + \frac{1083176694513515469444071954335743}{11570322305451672533869273850203328} a^{2} - \frac{1931905892553522310849373461761687}{11570322305451672533869273850203328} a + \frac{697917364633500826374165978224623}{11570322305451672533869273850203328}$
Class group and class number
$C_{2}\times C_{150}$, which has order $300$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27454988.0022 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times S_5$ (as 20T65):
| A non-solvable group of order 240 |
| The 14 conjugacy class representatives for $C_2\times S_5$ |
| Character table for $C_2\times S_5$ |
Intermediate fields
| 10.10.858892093935616.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 10 siblings: | data not computed |
| Degree 12 siblings: | data not computed |
| Degree 20 siblings: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 30 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.4.4.3 | $x^{4} + 2 x^{2} + 4 x + 4$ | $2$ | $2$ | $4$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ | |
| $13$ | 13.2.1.2 | $x^{2} + 26$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13.6.3.2 | $x^{6} - 338 x^{2} + 13182$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 457 | Data not computed | ||||||