Normalized defining polynomial
\( x^{20} - 8 x^{19} + 35 x^{18} - 108 x^{17} + 273 x^{16} - 600 x^{15} + 1152 x^{14} - 1896 x^{13} + 2622 x^{12} - 2960 x^{11} + 2590 x^{10} - 1528 x^{9} + 222 x^{8} + 744 x^{7} - 1056 x^{6} + 792 x^{5} - 291 x^{4} - 72 x^{3} + 155 x^{2} - 76 x + 13 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1744786769896095344492544=2^{52}\cdot 3^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} + \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{11} + \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4}$, $\frac{1}{4} a^{15} + \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{8} a^{16} - \frac{1}{8} a^{14} - \frac{1}{2} a^{11} - \frac{3}{8} a^{10} - \frac{1}{8} a^{6} - \frac{1}{2} a^{3} - \frac{3}{8} a^{2} - \frac{1}{8}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} - \frac{3}{8} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{8} a^{7} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a - \frac{1}{2}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{14} - \frac{1}{8} a^{12} + \frac{3}{8} a^{10} - \frac{1}{2} a^{9} + \frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{8}$, $\frac{1}{22837884484472} a^{19} - \frac{648189599921}{22837884484472} a^{18} + \frac{23815092338}{2854735560559} a^{17} + \frac{325905244433}{5709471121118} a^{16} + \frac{60356691283}{22837884484472} a^{15} + \frac{1951511940713}{22837884484472} a^{14} - \frac{2253478504959}{22837884484472} a^{13} + \frac{1485935973347}{22837884484472} a^{12} - \frac{9411385222135}{22837884484472} a^{11} - \frac{7805692923837}{22837884484472} a^{10} + \frac{10847374247619}{22837884484472} a^{9} + \frac{1431479777949}{22837884484472} a^{8} - \frac{3641437786293}{22837884484472} a^{7} - \frac{10376380026791}{22837884484472} a^{6} - \frac{3371920470047}{22837884484472} a^{5} + \frac{7668153532787}{22837884484472} a^{4} + \frac{13324002044}{69627696599} a^{3} - \frac{60181682287}{5709471121118} a^{2} - \frac{2762776400629}{22837884484472} a + \frac{8748074523881}{22837884484472}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{56551783397}{156423866332} a^{19} + \frac{431518190789}{156423866332} a^{18} - \frac{913161177855}{78211933166} a^{17} + \frac{10942480810011}{312847732664} a^{16} - \frac{6776010207235}{78211933166} a^{15} + \frac{58529602371917}{312847732664} a^{14} - \frac{55101190611777}{156423866332} a^{13} + \frac{88371467168931}{156423866332} a^{12} - \frac{118129749396401}{156423866332} a^{11} + \frac{254175759515141}{312847732664} a^{10} - \frac{25746266558645}{39105966583} a^{9} + \frac{25380587783423}{78211933166} a^{8} + \frac{2879482551785}{78211933166} a^{7} - \frac{82742614775803}{312847732664} a^{6} + \frac{46667052637415}{156423866332} a^{5} - \frac{29528389529477}{156423866332} a^{4} + \frac{40064660773}{953804063} a^{3} + \frac{13132092417803}{312847732664} a^{2} - \frac{3401687001943}{78211933166} a + \frac{3958560732185}{312847732664} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 69213.1676374 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times F_5$ (as 20T16):
| A solvable group of order 80 |
| The 20 conjugacy class representatives for $C_2^2\times F_5$ |
| Character table for $C_2^2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\), 5.1.165888.1, 10.2.1320903770112.1, 10.0.440301256704.1, 10.0.82556485632.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||