Normalized defining polynomial
\( x^{20} - 10 x^{19} + 57 x^{18} - 204 x^{17} + 597 x^{16} - 1542 x^{15} + 3584 x^{14} - 6528 x^{13} + 9059 x^{12} - 9576 x^{11} + 6821 x^{10} - 2116 x^{9} + 3245 x^{8} - 60408 x^{7} + 219396 x^{6} - 491660 x^{5} + 821043 x^{4} - 863398 x^{3} + 572299 x^{2} - 468806 x + 369151 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1740665216320641860403200000000000=2^{24}\cdot 5^{11}\cdot 19^{6}\cdot 461^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 19, 461$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} - \frac{1}{3} a^{11} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{14} + \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{17} + \frac{1}{9} a^{15} - \frac{4}{9} a^{14} + \frac{2}{9} a^{13} + \frac{2}{9} a^{12} + \frac{1}{3} a^{11} + \frac{4}{9} a^{10} - \frac{4}{9} a^{9} + \frac{4}{9} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2} - \frac{2}{9} a - \frac{1}{9}$, $\frac{1}{2645890618741791401453839222720854851897376122780746671} a^{19} - \frac{110176034348101518016144485419634846974919525245097586}{2645890618741791401453839222720854851897376122780746671} a^{18} - \frac{350266505047661058624748384572634730012261338190801348}{2645890618741791401453839222720854851897376122780746671} a^{17} - \frac{194217870745914031008013214045762414175858711118045052}{2645890618741791401453839222720854851897376122780746671} a^{16} - \frac{53946651944162482640165185677776397524241037376679715}{881963539580597133817946407573618283965792040926915557} a^{15} + \frac{611556162111093351430453498403746415949791218526553118}{2645890618741791401453839222720854851897376122780746671} a^{14} + \frac{294611177605577463637402673487784145446912589503929238}{2645890618741791401453839222720854851897376122780746671} a^{13} - \frac{728044297650604560444725857681470074095433265022924138}{2645890618741791401453839222720854851897376122780746671} a^{12} + \frac{1085229726591407031576240387015711321643463030881978036}{2645890618741791401453839222720854851897376122780746671} a^{11} - \frac{81341182113665938909968513141855838740963961779655163}{881963539580597133817946407573618283965792040926915557} a^{10} - \frac{215954411316827926993894061881662945074840051576018855}{881963539580597133817946407573618283965792040926915557} a^{9} + \frac{1322749191557938127786108002748413379556844908534794065}{2645890618741791401453839222720854851897376122780746671} a^{8} + \frac{46869110415864071250520412494155312023679082122590516}{293987846526865711272648802524539427988597346975638519} a^{7} - \frac{275302585411977587937051624743729499104575380408003853}{881963539580597133817946407573618283965792040926915557} a^{6} + \frac{361340954554565511827257162518104424610908667627886401}{881963539580597133817946407573618283965792040926915557} a^{5} - \frac{52425595370483626230017834280049698229220893903716110}{2645890618741791401453839222720854851897376122780746671} a^{4} - \frac{78335905886345271957923523078156543138344889898883701}{881963539580597133817946407573618283965792040926915557} a^{3} - \frac{90138442546800437615717929566655426952604316273059066}{293987846526865711272648802524539427988597346975638519} a^{2} + \frac{427382225570504744777548200381891953875265505283968280}{881963539580597133817946407573618283965792040926915557} a - \frac{302378691407306235137957185773237446747413489037195962}{2645890618741791401453839222720854851897376122780746671}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 100730781.481 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3686400 |
| The 180 conjugacy class representatives for t20n1010 are not computed |
| Character table for t20n1010 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 10.6.61376064800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 40 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | $20$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $20$ | R | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | $20$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.12.6.1 | $x^{12} + 500 x^{6} - 3125 x^{2} + 62500$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| $19$ | 19.2.1.1 | $x^{2} - 19$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 19.4.3.2 | $x^{4} - 19$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 19.4.2.1 | $x^{4} + 57 x^{2} + 1444$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 19.10.0.1 | $x^{10} + x^{2} - 2 x + 14$ | $1$ | $10$ | $0$ | $C_{10}$ | $[\ ]^{10}$ | |
| 461 | Data not computed | ||||||