Normalized defining polynomial
\( x^{20} - 4 x^{19} + 44 x^{18} - 201 x^{17} + 936 x^{16} - 3955 x^{15} + 13078 x^{14} - 38360 x^{13} + 131063 x^{12} - 199166 x^{11} + 783658 x^{10} - 864273 x^{9} + 1769921 x^{8} - 3519863 x^{7} + 111799 x^{6} - 3876224 x^{5} + 12202264 x^{4} + 21517674 x^{3} + 41684221 x^{2} + 33419335 x + 20136811 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1732130950652108498309514155453770033=61^{6}\cdot 97^{5}\cdot 397^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $64.85$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 97, 397$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} + \frac{1}{3} a^{9} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{12} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{3} + \frac{1}{3}$, $\frac{1}{3} a^{14} + \frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{3} a^{8} - \frac{1}{2} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{16} - \frac{1}{3} a^{9} - \frac{1}{2} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{17} - \frac{1}{6} a^{9} - \frac{1}{3} a^{7} + \frac{1}{6} a^{5} - \frac{1}{3} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{18} - \frac{1}{6} a^{10} - \frac{1}{3} a^{8} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} - \frac{1}{6} a^{4} - \frac{1}{2} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{5528240960864501690210704769727862529806380074865333193276164405603666} a^{19} - \frac{67937180433273399681076028150703745919259053571004251903671014926027}{921373493477416948368450794954643754967730012477555532212694067600611} a^{18} - \frac{138502279645987113081595196870771064895389411186256744374872710342845}{1842746986954833896736901589909287509935460024955111064425388135201222} a^{17} + \frac{63444303370358352066015525266418695144788487430824931750190342634430}{921373493477416948368450794954643754967730012477555532212694067600611} a^{16} - \frac{143988506792592035534992781958029365749244211440481296003093600195636}{2764120480432250845105352384863931264903190037432666596638082202801833} a^{15} - \frac{71027948344692347543230912373730411848349710963103740186543436384140}{2764120480432250845105352384863931264903190037432666596638082202801833} a^{14} + \frac{135023796759848563888514402553959241715606888139534903990771055454683}{921373493477416948368450794954643754967730012477555532212694067600611} a^{13} + \frac{15132545746053812545555885444488514419365705044503119350362706029427}{2764120480432250845105352384863931264903190037432666596638082202801833} a^{12} - \frac{42563822816700202570091670876006465861267133858910059829795702600361}{1842746986954833896736901589909287509935460024955111064425388135201222} a^{11} + \frac{73740650295811431486252043968070737546754554399966125978903529451134}{921373493477416948368450794954643754967730012477555532212694067600611} a^{10} + \frac{1895245971722395113114934643783816986815176789857274335098749119926145}{5528240960864501690210704769727862529806380074865333193276164405603666} a^{9} + \frac{384055678945269736004034035914910317304221945877928150485231123791129}{921373493477416948368450794954643754967730012477555532212694067600611} a^{8} - \frac{2450142006130753171697249496264603972079152571979358521663679079108157}{5528240960864501690210704769727862529806380074865333193276164405603666} a^{7} - \frac{433403384501966492310016611472701930130268489188857776815492684886645}{921373493477416948368450794954643754967730012477555532212694067600611} a^{6} - \frac{771685990190463061389078132515553242719391651910207675322328679473674}{2764120480432250845105352384863931264903190037432666596638082202801833} a^{5} - \frac{758219188412994040197433550573394559394229959438742770851271759778425}{5528240960864501690210704769727862529806380074865333193276164405603666} a^{4} + \frac{2501466849631907274579359204679400850129526619057186914685760638767547}{5528240960864501690210704769727862529806380074865333193276164405603666} a^{3} + \frac{40469873494099687877646703806121817023778333709445661125404728952023}{1842746986954833896736901589909287509935460024955111064425388135201222} a^{2} - \frac{711845002596565571095955355594246104621243507446071832602908591744857}{2764120480432250845105352384863931264903190037432666596638082202801833} a - \frac{1074429330368001979101619633273269946209974423544517674258669487405255}{2764120480432250845105352384863931264903190037432666596638082202801833}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2699917620.27 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n792 are not computed |
| Character table for t20n792 is not computed |
Intermediate fields
| 5.5.24217.1, 10.2.14202376626313.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }$ | ${\href{/LocalNumberField/7.10.0.1}{10} }{,}\,{\href{/LocalNumberField/7.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $97$ | 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.2.1.2 | $x^{2} + 485$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 97.6.3.1 | $x^{6} - 194 x^{4} + 9409 x^{2} - 22816825$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 397 | Data not computed | ||||||