Normalized defining polynomial
\( x^{20} + 68 x^{18} + 2017 x^{16} + 34328 x^{14} + 371596 x^{12} + 2689136 x^{10} + 13405291 x^{8} + 47451488 x^{6} + 125864335 x^{4} + 275545100 x^{2} + 558235129 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1726825922665179584778586849482316447744=2^{40}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $91.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(616=2^{3}\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{616}(1,·)$, $\chi_{616}(195,·)$, $\chi_{616}(391,·)$, $\chi_{616}(139,·)$, $\chi_{616}(141,·)$, $\chi_{616}(83,·)$, $\chi_{616}(533,·)$, $\chi_{616}(475,·)$, $\chi_{616}(477,·)$, $\chi_{616}(225,·)$, $\chi_{616}(421,·)$, $\chi_{616}(167,·)$, $\chi_{616}(169,·)$, $\chi_{616}(615,·)$, $\chi_{616}(113,·)$, $\chi_{616}(449,·)$, $\chi_{616}(307,·)$, $\chi_{616}(309,·)$, $\chi_{616}(503,·)$, $\chi_{616}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{23627} a^{11} + \frac{33}{23627} a^{9} + \frac{396}{23627} a^{7} + \frac{2079}{23627} a^{5} + \frac{4455}{23627} a^{3} + \frac{2673}{23627} a$, $\frac{1}{211059991} a^{12} - \frac{101005392}{211059991} a^{10} - \frac{75322480}{211059991} a^{8} + \frac{53351845}{211059991} a^{6} - \frac{12565109}{211059991} a^{4} - \frac{18851673}{211059991} a^{2} + \frac{3739}{8933}$, $\frac{1}{211059991} a^{13} + \frac{39}{211059991} a^{11} + \frac{91956878}{211059991} a^{9} - \frac{49895769}{211059991} a^{7} - \frac{26965105}{211059991} a^{5} - \frac{19557380}{211059991} a^{3} - \frac{80930064}{211059991} a$, $\frac{1}{211059991} a^{14} + \frac{21027337}{211059991} a^{10} - \frac{67158923}{211059991} a^{8} + \frac{2912850}{211059991} a^{6} + \frac{48361889}{211059991} a^{4} + \frac{21105210}{211059991} a^{2} - \frac{2893}{8933}$, $\frac{1}{211059991} a^{15} - \frac{945}{211059991} a^{11} + \frac{83147735}{211059991} a^{9} - \frac{92947173}{211059991} a^{7} + \frac{19981748}{211059991} a^{5} + \frac{50744904}{211059991} a^{3} + \frac{76066900}{211059991} a$, $\frac{1}{211059991} a^{16} + \frac{32168227}{211059991} a^{10} + \frac{65586185}{211059991} a^{8} - \frac{5862576}{211059991} a^{6} - \frac{3923605}{211059991} a^{4} - \frac{9724841}{211059991} a^{2} - \frac{4113}{8933}$, $\frac{1}{211059991} a^{17} + \frac{494}{211059991} a^{11} + \frac{59350951}{211059991} a^{9} - \frac{80685384}{211059991} a^{7} + \frac{25376635}{211059991} a^{5} - \frac{7241467}{211059991} a^{3} + \frac{30948168}{211059991} a$, $\frac{1}{211059991} a^{18} - \frac{65203268}{211059991} a^{10} - \frac{17938680}{211059991} a^{8} + \frac{52064080}{211059991} a^{6} + \frac{79182640}{211059991} a^{4} + \frac{57035026}{211059991} a^{2} + \frac{2065}{8933}$, $\frac{1}{211059991} a^{19} - \frac{1301}{211059991} a^{11} + \frac{23126321}{211059991} a^{9} - \frac{88335881}{211059991} a^{7} - \frac{77502180}{211059991} a^{5} - \frac{97809596}{211059991} a^{3} - \frac{1905020}{211059991} a$
Class group and class number
$C_{2}\times C_{4}\times C_{26164}$, which has order $209312$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 530208.250733 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-154}) \), \(\Q(\sqrt{2}, \sqrt{-77})\), \(\Q(\zeta_{11})^+\), 10.0.40581147486860288.1, 10.10.7024111812608.1, 10.0.1298596719579529216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.2 | $x^{10} - 2401 x^{2} + 67228$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||