Normalized defining polynomial
\( x^{20} - 8 x^{19} + 100 x^{18} - 572 x^{17} + 4226 x^{16} - 19266 x^{15} + 104804 x^{14} - 393036 x^{13} + 1692149 x^{12} - 5256998 x^{11} + 18451103 x^{10} - 46979228 x^{9} + 135712461 x^{8} - 274849484 x^{7} + 653189606 x^{6} - 999145718 x^{5} + 1945306784 x^{4} - 2034072024 x^{3} + 3221261412 x^{2} - 1765189036 x + 2248377097 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(171860242615100874270814694801408=2^{20}\cdot 7^{15}\cdot 11^{13}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.90$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{19} - \frac{151118652480709911958694631618145658704735566923855033980936198503663745963156}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{18} + \frac{12266713856523096693958025787874024641700205892162272414414193269985801031907}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{17} + \frac{276495810353985860484041022732385826520060565971109760964641748131289581128291}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{16} - \frac{173069464535037102234312618025093673182833154910762361392066574833114501323128}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{15} - \frac{58364041512955551882571927839662637862209253921749043181708338731303991811461}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{14} - \frac{293431502942411741348036412349888938780198470059475318159979345962580914138915}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{13} + \frac{184761748959709863001850971314821653159904765488036944815106406918996679440946}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{12} - \frac{103861619998059601108700451033813623031990407602803670965438042948364524762133}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{11} - \frac{196723320632430706356454536795344350578929483665151983210774920729004949366386}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{10} + \frac{11101110622193988155979003577457477336207450160414001521210263519021114985617}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{9} - \frac{120498235286493345796153481248095111345747595610105352271410716358345366974350}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{8} - \frac{40302745837483620801829087074687273807615586556388704598892560401908756515367}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{7} + \frac{129182555962220400644454428076291210373450886407499080563947390730617307105131}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{6} + \frac{302359295561048871172136564016304257264190917617968300857581953751198073912008}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{5} + \frac{226168987588328938388669636215631607632374704069494504484714013510105620575063}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{4} - \frac{148429608923242789553624975792155323741381032362395065900172223476339763175050}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{3} + \frac{180173112179777159700030111243064479804585017485785144875561988046491023828609}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a^{2} + \frac{96382317825855502909269156010438628112003810138007568689139153194567924055037}{631771062367569349044499480881348151291048598269343645005836032176927373214821} a + \frac{268322623792118969890661687750930371252286543675459410260407129367075689634704}{631771062367569349044499480881348151291048598269343645005836032176927373214821}$
Class group and class number
$C_{2}\times C_{22}$, which has order $44$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1071550.255200949 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_5\times C_5:D_4$ (as 20T53):
| A solvable group of order 200 |
| The 65 conjugacy class representatives for $C_5\times C_5:D_4$ are not computed |
| Character table for $C_5\times C_5:D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-7}) \), 4.0.60368.1, 10.0.246071287.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20$ | $20$ | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }^{2}$ | $20$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{5}$ | $20$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.10.7 | $x^{10} - x^{8} - x^{6} - 3 x^{2} - 7$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ |
| 2.10.10.11 | $x^{10} - x^{8} + 3 x^{6} + x^{2} - 3$ | $2$ | $5$ | $10$ | $C_{10}$ | $[2]^{5}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.8.1 | $x^{10} + 220 x^{5} + 41503$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |