Normalized defining polynomial
\( x^{20} + 15190 x^{16} - 1410500 x^{14} + 34083105 x^{12} - 7040729300 x^{10} + 608478061360 x^{8} - 5962442238400 x^{6} + 163111166566400 x^{4} + 2366899073843200 x^{2} + 8311744258637824 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(17066738769507935511210210961914062500000000000000000000=2^{20}\cdot 5^{32}\cdot 31^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $577.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3100=2^{2}\cdot 5^{2}\cdot 31\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3100}(1,·)$, $\chi_{3100}(2261,·)$, $\chi_{3100}(771,·)$, $\chi_{3100}(581,·)$, $\chi_{3100}(711,·)$, $\chi_{3100}(2761,·)$, $\chi_{3100}(1551,·)$, $\chi_{3100}(2321,·)$, $\chi_{3100}(2131,·)$, $\chi_{3100}(2581,·)$, $\chi_{3100}(791,·)$, $\chi_{3100}(221,·)$, $\chi_{3100}(1441,·)$, $\chi_{3100}(2851,·)$, $\chi_{3100}(2341,·)$, $\chi_{3100}(1031,·)$, $\chi_{3100}(2991,·)$, $\chi_{3100}(1771,·)$, $\chi_{3100}(1211,·)$, $\chi_{3100}(1301,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{6} - \frac{1}{8} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{5} + \frac{1}{32} a^{3} + \frac{1}{8} a$, $\frac{1}{256} a^{8} + \frac{7}{128} a^{6} + \frac{17}{256} a^{4} + \frac{1}{64} a^{2}$, $\frac{1}{256} a^{9} - \frac{1}{128} a^{7} - \frac{15}{256} a^{5} + \frac{13}{64} a^{3} + \frac{1}{4} a$, $\frac{1}{7936} a^{10} - \frac{13}{256} a^{6} + \frac{5}{128} a^{4} + \frac{7}{32} a^{2}$, $\frac{1}{15872} a^{11} - \frac{1}{512} a^{9} + \frac{5}{512} a^{7} + \frac{25}{512} a^{5} + \frac{13}{128} a^{3}$, $\frac{1}{31744} a^{12} - \frac{1}{31744} a^{10} + \frac{1}{1024} a^{8} + \frac{27}{1024} a^{6} - \frac{9}{256} a^{4} - \frac{1}{8} a^{2}$, $\frac{1}{63488} a^{13} - \frac{1}{63488} a^{11} + \frac{1}{2048} a^{9} + \frac{27}{2048} a^{7} - \frac{9}{512} a^{5} - \frac{1}{16} a^{3}$, $\frac{1}{63488} a^{14} - \frac{1}{63488} a^{12} - \frac{1}{63488} a^{10} + \frac{3}{2048} a^{8} + \frac{11}{512} a^{6} + \frac{21}{256} a^{4} - \frac{27}{64} a^{2}$, $\frac{1}{507904} a^{15} - \frac{1}{126976} a^{13} + \frac{3}{253952} a^{11} - \frac{1}{4096} a^{9} - \frac{17}{16384} a^{7} + \frac{47}{2048} a^{5} - \frac{81}{1024} a^{3} + \frac{3}{16} a$, $\frac{1}{16252928} a^{16} - \frac{25}{4063232} a^{14} - \frac{77}{8126464} a^{12} - \frac{231}{4063232} a^{10} + \frac{975}{524288} a^{8} - \frac{1137}{65536} a^{6} + \frac{1295}{32768} a^{4} + \frac{59}{512} a^{2} - \frac{1}{2}$, $\frac{1}{32505856} a^{17} + \frac{7}{8126464} a^{15} - \frac{77}{16252928} a^{13} - \frac{167}{8126464} a^{11} + \frac{975}{1048576} a^{9} + \frac{319}{131072} a^{7} + \frac{3151}{65536} a^{5} - \frac{167}{1024} a^{3} - \frac{3}{8} a$, $\frac{1}{53167904909055965935797500039852213972403117621248} a^{18} - \frac{176637385802357200509515188828007994792597}{6645988113631995741974687504981526746550389702656} a^{16} - \frac{99638213535634041578799387277603985137043973}{26583952454527982967898750019926106986201558810624} a^{14} - \frac{325533488750923659412325623087325362308397}{13291976227263991483949375009963053493100779405312} a^{12} - \frac{2066979241296434654572794172879795170783782527}{53167904909055965935797500039852213972403117621248} a^{10} - \frac{91335888262296293130002031953442126604029729}{428773426685935209159657258385904951390347722752} a^{8} + \frac{4092197446502804301398423134205756133363661201}{107193356671483802289914314596476237847586930688} a^{6} + \frac{2454274184602551977936393598911155994388557361}{26798339167870950572478578649119059461896732672} a^{4} + \frac{29151006285811990192721368265549569756582285}{418724049497983602694977791392485304092136448} a^{2} + \frac{97137191165197128207186991647784229626349}{1635640818351498448027256997626895719109908}$, $\frac{1}{4733644909863070759195923023548122314390994368054951936} a^{19} + \frac{126510549249775242024650533333857055369539}{13291976227263991483949375009963053493100779405312} a^{17} - \frac{43105832031547365813232692801956475717984730571}{76349111449404367083805210057227779264370876904112128} a^{15} + \frac{207759244533748181370734592530354416607850030977}{38174555724702183541902605028613889632185438452056064} a^{13} + \frac{557783925505101948922126809052150591602039223103}{152698222898808734167610420114455558528741753808224256} a^{11} - \frac{56094089789881097368425799679473282339845004001795}{38174555724702183541902605028613889632185438452056064} a^{9} - \frac{1904381833978328012172390821443982485747796245997}{307859320360501480176633911521079755098269664935936} a^{7} + \frac{4656986301907738185670230452888988858585160922705}{76964830090125370044158477880269938774567416233984} a^{5} + \frac{140909682071294152210149217297681023474185848725}{1202575470158208906939976216879217793352615878656} a^{3} - \frac{1328717599721116781275555025298273132584360865}{4697560430305503542734282097184444505283655776} a$
Class group and class number
$C_{2}\times C_{10}\times C_{10}\times C_{7914030}$, which has order $1582806000$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{591803313435205375}{2960873419691585947763430274367488} a^{19} + \frac{551576372805}{8314070838832065852062826496} a^{17} - \frac{143837896661014691403}{47756022898251386254248875393024} a^{15} + \frac{6754940481642080224545}{23878011449125693127124437696512} a^{13} - \frac{626901794065246530995905}{95512045796502772508497750786048} a^{11} + \frac{32821945244944505853398125}{23878011449125693127124437696512} a^{9} - \frac{23421356084913706910979085}{192564608460691073605842239488} a^{7} + \frac{51853319877981252340943713}{48141152115172768401460559872} a^{5} - \frac{14131218421374694178744895}{752205501799574506272821248} a^{3} - \frac{99388391436217800781355}{183643921337786744695513} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 44990028220676.63 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| $5$ | 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 5.5.8.2 | $x^{5} - 5 x^{4} + 5$ | $5$ | $1$ | $8$ | $C_5$ | $[2]$ | |
| 31 | Data not computed | ||||||