Normalized defining polynomial
\( x^{20} - 7 x^{19} + 29 x^{18} - 90 x^{17} + 210 x^{16} - 345 x^{15} + 260 x^{14} + 206 x^{13} - 62 x^{12} + 1599 x^{11} - 2242 x^{10} - 4550 x^{9} - 1200 x^{8} + 2598 x^{7} + 8307 x^{6} + 10639 x^{5} + 7581 x^{4} + 4455 x^{3} + 2700 x^{2} + 1215 x + 243 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1701057228680302987747119277957=7^{16}\cdot 13^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{5} - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a$, $\frac{1}{26} a^{12} - \frac{3}{26} a^{11} + \frac{1}{26} a^{10} - \frac{2}{13} a^{9} - \frac{6}{13} a^{8} - \frac{11}{26} a^{7} + \frac{11}{26} a^{6} + \frac{5}{26} a^{5} - \frac{5}{13} a^{4} - \frac{2}{13} a^{3} + \frac{9}{26} a^{2} - \frac{9}{26} a + \frac{1}{26}$, $\frac{1}{26} a^{13} + \frac{5}{26} a^{11} - \frac{1}{26} a^{10} + \frac{1}{13} a^{9} + \frac{5}{26} a^{8} + \frac{2}{13} a^{7} - \frac{1}{26} a^{6} + \frac{5}{26} a^{5} - \frac{4}{13} a^{4} - \frac{3}{26} a^{3} - \frac{4}{13} a^{2} - \frac{1}{2} a + \frac{3}{26}$, $\frac{1}{26} a^{14} + \frac{1}{26} a^{11} - \frac{3}{26} a^{10} - \frac{1}{26} a^{9} + \frac{6}{13} a^{8} + \frac{1}{13} a^{7} - \frac{11}{26} a^{6} - \frac{7}{26} a^{5} - \frac{5}{26} a^{4} + \frac{6}{13} a^{3} - \frac{3}{13} a^{2} + \frac{9}{26} a - \frac{5}{26}$, $\frac{1}{26} a^{15} - \frac{1}{13} a^{10} - \frac{5}{13} a^{9} - \frac{6}{13} a^{8} + \frac{4}{13} a^{6} - \frac{5}{13} a^{5} - \frac{2}{13} a^{4} - \frac{1}{13} a^{3} + \frac{2}{13} a - \frac{1}{26}$, $\frac{1}{156} a^{16} - \frac{1}{156} a^{15} - \frac{1}{156} a^{14} - \frac{1}{52} a^{13} + \frac{7}{52} a^{11} - \frac{7}{39} a^{10} + \frac{71}{156} a^{9} + \frac{37}{156} a^{8} + \frac{6}{13} a^{7} + \frac{35}{156} a^{6} - \frac{1}{78} a^{5} + \frac{19}{52} a^{4} + \frac{17}{52} a^{3} + \frac{5}{13} a^{2} + \frac{16}{39} a + \frac{25}{52}$, $\frac{1}{468} a^{17} - \frac{1}{468} a^{16} + \frac{5}{468} a^{15} + \frac{1}{156} a^{14} - \frac{1}{78} a^{13} - \frac{1}{156} a^{12} + \frac{49}{234} a^{11} + \frac{101}{468} a^{10} + \frac{211}{468} a^{9} + \frac{29}{78} a^{8} - \frac{181}{468} a^{7} - \frac{50}{117} a^{6} + \frac{1}{12} a^{5} - \frac{61}{156} a^{4} - \frac{1}{2} a^{3} + \frac{43}{117} a^{2} - \frac{11}{52} a$, $\frac{1}{37064196} a^{18} + \frac{5741}{9266049} a^{17} - \frac{3742}{9266049} a^{16} - \frac{5377}{3088683} a^{15} + \frac{228499}{12354732} a^{14} - \frac{212449}{12354732} a^{13} - \frac{669727}{37064196} a^{12} + \frac{4586405}{37064196} a^{11} - \frac{4374271}{18532098} a^{10} - \frac{371897}{1372748} a^{9} + \frac{2543795}{37064196} a^{8} + \frac{8349229}{37064196} a^{7} + \frac{1107701}{4118244} a^{6} - \frac{2826581}{6177366} a^{5} + \frac{2042479}{4118244} a^{4} - \frac{1483886}{9266049} a^{3} - \frac{2159347}{12354732} a^{2} - \frac{613745}{4118244} a - \frac{30769}{686374}$, $\frac{1}{617647052103520545756} a^{19} - \frac{4836004215409}{617647052103520545756} a^{18} - \frac{635867283892263223}{617647052103520545756} a^{17} + \frac{118088221698862273}{51470587675293378813} a^{16} - \frac{22824398412113161}{1821967705320119604} a^{15} + \frac{582982133517569063}{51470587675293378813} a^{14} - \frac{2196893880854870221}{617647052103520545756} a^{13} - \frac{10782171892155479353}{617647052103520545756} a^{12} + \frac{47166391942663817279}{308823526051760272878} a^{11} + \frac{13175569505888707829}{102941175350586757626} a^{10} + \frac{121149668431469297029}{308823526051760272878} a^{9} - \frac{3842876363741044181}{14363884932640012692} a^{8} + \frac{52626020627229375043}{205882350701173515252} a^{7} + \frac{28139466835686393601}{102941175350586757626} a^{6} - \frac{2782033733720650255}{5718954186143708757} a^{5} + \frac{12273971471437312981}{617647052103520545756} a^{4} + \frac{738110314110393317}{17156862558431126271} a^{3} - \frac{1184556659869230527}{2639517316681711734} a^{2} + \frac{1491923351219793571}{11437908372287417514} a - \frac{75352705535786445}{586559403707047052}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9407573.54607 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 20 |
| The 5 conjugacy class representatives for $F_5$ |
| Character table for $F_5$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 5.1.5274997.1 x5, 10.2.361732713550117.1 x5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 5 sibling: | 5.1.5274997.1 |
| Degree 10 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{5}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |