Normalized defining polynomial
\( x^{20} - 10 x^{19} + 35 x^{18} - 30 x^{17} - 105 x^{16} + 228 x^{15} + 90 x^{14} - 540 x^{13} + 45 x^{12} + 770 x^{11} + 644073 x^{10} - 3221790 x^{9} + 43483815 x^{8} - 154608420 x^{7} + 473490030 x^{6} - 892866972 x^{5} + 1217545455 x^{4} - 1120914930 x^{3} + 681245765 x^{2} - 244797510 x + 103789316951 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16998350586511360000000000000000000000=2^{38}\cdot 5^{22}\cdot 11^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.70$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{11} a^{4} - \frac{2}{11} a^{3} - \frac{1}{11} a^{2} + \frac{2}{11} a + \frac{1}{11}$, $\frac{1}{11} a^{5} - \frac{5}{11} a^{3} + \frac{5}{11} a + \frac{2}{11}$, $\frac{1}{11} a^{6} + \frac{1}{11} a^{3} + \frac{1}{11} a + \frac{5}{11}$, $\frac{1}{11} a^{7} + \frac{2}{11} a^{3} + \frac{2}{11} a^{2} + \frac{3}{11} a - \frac{1}{11}$, $\frac{1}{121} a^{8} - \frac{4}{121} a^{7} + \frac{2}{121} a^{6} - \frac{3}{121} a^{5} - \frac{5}{121} a^{4} + \frac{47}{121} a^{3} + \frac{2}{121} a^{2} - \frac{51}{121} a - \frac{21}{121}$, $\frac{1}{121} a^{9} - \frac{3}{121} a^{7} + \frac{5}{121} a^{6} + \frac{5}{121} a^{5} + \frac{5}{121} a^{4} + \frac{25}{121} a^{3} + \frac{1}{121} a^{2} - \frac{5}{121} a + \frac{48}{121}$, $\frac{1}{605} a^{10} + \frac{3}{121} a^{7} - \frac{26}{605} a^{5} + \frac{2}{121} a^{4} + \frac{57}{121} a^{3} + \frac{9}{121} a^{2} - \frac{32}{121} a - \frac{184}{605}$, $\frac{1}{605} a^{11} + \frac{1}{121} a^{7} - \frac{1}{605} a^{6} - \frac{5}{121} a^{4} - \frac{5}{11} a^{3} + \frac{17}{121} a^{2} + \frac{31}{605} a + \frac{30}{121}$, $\frac{1}{6655} a^{12} + \frac{1}{1331} a^{11} - \frac{2}{6655} a^{10} + \frac{2}{1331} a^{9} + \frac{5}{1331} a^{8} + \frac{269}{6655} a^{7} + \frac{28}{1331} a^{6} + \frac{127}{6655} a^{5} - \frac{17}{1331} a^{4} + \frac{614}{1331} a^{3} - \frac{2829}{6655} a^{2} - \frac{67}{1331} a - \frac{142}{6655}$, $\frac{1}{6655} a^{13} - \frac{1}{1331} a^{11} - \frac{2}{6655} a^{10} - \frac{5}{1331} a^{9} - \frac{21}{6655} a^{8} - \frac{32}{1331} a^{7} + \frac{57}{1331} a^{6} - \frac{258}{6655} a^{5} - \frac{16}{1331} a^{4} + \frac{1071}{6655} a^{3} - \frac{153}{1331} a^{2} + \frac{47}{1331} a - \frac{1182}{6655}$, $\frac{1}{6655} a^{14} + \frac{1}{6655} a^{11} - \frac{2}{6655} a^{10} - \frac{26}{6655} a^{9} + \frac{4}{1331} a^{8} + \frac{29}{1331} a^{7} + \frac{299}{6655} a^{6} - \frac{138}{6655} a^{5} - \frac{234}{6655} a^{4} + \frac{79}{1331} a^{3} + \frac{661}{1331} a^{2} - \frac{2879}{6655} a + \frac{1248}{6655}$, $\frac{1}{6655} a^{15} + \frac{4}{6655} a^{11} - \frac{2}{6655} a^{10} + \frac{2}{1331} a^{9} + \frac{2}{1331} a^{8} + \frac{50}{1331} a^{7} + \frac{96}{6655} a^{6} + \frac{2}{6655} a^{5} - \frac{47}{1331} a^{4} - \frac{580}{1331} a^{3} + \frac{331}{1331} a^{2} - \frac{3246}{6655} a - \frac{2971}{6655}$, $\frac{1}{366025} a^{16} - \frac{8}{366025} a^{15} - \frac{24}{366025} a^{14} - \frac{2}{33275} a^{13} - \frac{4}{366025} a^{12} - \frac{274}{366025} a^{11} - \frac{251}{366025} a^{10} + \frac{419}{366025} a^{9} - \frac{103}{366025} a^{8} - \frac{3741}{366025} a^{7} - \frac{11526}{366025} a^{6} - \frac{3884}{366025} a^{5} - \frac{15404}{366025} a^{4} - \frac{12472}{33275} a^{3} + \frac{35011}{366025} a^{2} + \frac{51367}{366025} a + \frac{54891}{366025}$, $\frac{1}{366025} a^{17} + \frac{2}{33275} a^{15} + \frac{6}{366025} a^{14} - \frac{3}{73205} a^{13} + \frac{24}{366025} a^{12} + \frac{252}{366025} a^{11} - \frac{214}{366025} a^{10} + \frac{829}{366025} a^{9} - \frac{6}{6655} a^{8} + \frac{13766}{366025} a^{7} + \frac{8738}{366025} a^{6} + \frac{10449}{366025} a^{5} - \frac{879}{366025} a^{4} + \frac{3238}{73205} a^{3} + \frac{35557}{73205} a^{2} + \frac{115697}{366025} a + \frac{75413}{366025}$, $\frac{1}{8625100756002484009554064525} a^{18} - \frac{9}{8625100756002484009554064525} a^{17} + \frac{2654835896175976296733}{8625100756002484009554064525} a^{16} - \frac{4247737433881562074732}{1725020151200496801910812905} a^{15} - \frac{7487060246466429553178}{784100068727498546323096775} a^{14} - \frac{347852507007859063235713}{8625100756002484009554064525} a^{13} + \frac{90380080297263641779497}{8625100756002484009554064525} a^{12} + \frac{6901541357461763060494674}{8625100756002484009554064525} a^{11} + \frac{144784642544013531552374}{8625100756002484009554064525} a^{10} - \frac{17258250075044134424959107}{8625100756002484009554064525} a^{9} + \frac{2032927809202495989574228}{784100068727498546323096775} a^{8} - \frac{240997383543904772564506112}{8625100756002484009554064525} a^{7} - \frac{388126879237963092209437099}{8625100756002484009554064525} a^{6} + \frac{238279968220688654600595151}{8625100756002484009554064525} a^{5} + \frac{4259812688298036816636157}{8625100756002484009554064525} a^{4} + \frac{3152701558913381187855571483}{8625100756002484009554064525} a^{3} + \frac{1138195085206076595284317233}{8625100756002484009554064525} a^{2} + \frac{2369656851402421728933498597}{8625100756002484009554064525} a - \frac{3827858353808000996845649466}{8625100756002484009554064525}$, $\frac{1}{2844865050038812502714602347082347825} a^{19} + \frac{8679883}{149729739475726973827084334056965675} a^{18} - \frac{403454696872387156464496283962}{568973010007762500542920469416469565} a^{17} - \frac{1846156802148800662289140451518}{2844865050038812502714602347082347825} a^{16} - \frac{28217927364386518240026939596363}{2844865050038812502714602347082347825} a^{15} - \frac{35138382564145229345827827312961}{2844865050038812502714602347082347825} a^{14} + \frac{117154244209210335300358361348026}{2844865050038812502714602347082347825} a^{13} + \frac{95484219880652875163561461202339}{2844865050038812502714602347082347825} a^{12} - \frac{2057303114760032701727592357972851}{2844865050038812502714602347082347825} a^{11} - \frac{82079822354937538566013370715026}{2844865050038812502714602347082347825} a^{10} + \frac{5024848559152737186346665913343231}{2844865050038812502714602347082347825} a^{9} + \frac{6881477467426698240598837337563834}{2844865050038812502714602347082347825} a^{8} + \frac{114102514344317900095296025671216731}{2844865050038812502714602347082347825} a^{7} + \frac{98550331463992037810509907821601716}{2844865050038812502714602347082347825} a^{6} - \frac{92588617544198996705844444522768454}{2844865050038812502714602347082347825} a^{5} - \frac{2357987691024603186964193172328921}{568973010007762500542920469416469565} a^{4} - \frac{51464616164205970967091303060238078}{149729739475726973827084334056965675} a^{3} + \frac{427174315845196884927158247690896734}{2844865050038812502714602347082347825} a^{2} - \frac{422299569918402311670074736467305604}{2844865050038812502714602347082347825} a - \frac{68442045891827315469801891753821596}{149729739475726973827084334056965675}$
Class group and class number
Not computed
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times F_5$ (as 20T13):
| A solvable group of order 40 |
| The 10 conjugacy class representatives for $C_2\times F_5$ |
| Character table for $C_2\times F_5$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{5}, \sqrt{-22})\), 5.1.50000.1, 10.2.12500000000.1, 10.0.824581120000000000.1, 10.0.4122905600000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 10 siblings: | data not computed |
| Degree 20 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{10}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.1 | $x^{10} - 242 x^{6} - 1331 x^{4} - 131769 x^{2} - 4026275$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |