Normalized defining polynomial
\( x^{20} - 2 x^{19} + 5 x^{18} - 24 x^{17} + 70 x^{16} - 114 x^{15} + 78 x^{14} + 174 x^{13} - 853 x^{12} + 2502 x^{11} - 7516 x^{10} + 17494 x^{9} - 20080 x^{8} - 13454 x^{7} + 96689 x^{6} - 182618 x^{5} + 191409 x^{4} - 120740 x^{3} + 46159 x^{2} - 10388 x + 1297 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1697562448531136375219997900800=2^{20}\cdot 5^{2}\cdot 36497^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.47$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 36497$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{3078865357451524208298983284371091693344809} a^{19} + \frac{1315363855144836713273142748676679971240891}{3078865357451524208298983284371091693344809} a^{18} + \frac{469731947114834915563568309492188043287926}{3078865357451524208298983284371091693344809} a^{17} - \frac{83856685034357299621525334345881318216416}{3078865357451524208298983284371091693344809} a^{16} + \frac{1006846194044663108053495696779123677249894}{3078865357451524208298983284371091693344809} a^{15} - \frac{1199720546026324109958794735959139178860242}{3078865357451524208298983284371091693344809} a^{14} + \frac{1520836895487833717409672781899497356717668}{3078865357451524208298983284371091693344809} a^{13} - \frac{1223502640531025760064392091391934888310400}{3078865357451524208298983284371091693344809} a^{12} + \frac{646245838317462270558881058749357348666858}{3078865357451524208298983284371091693344809} a^{11} - \frac{1226698877338456644372480092314156592196672}{3078865357451524208298983284371091693344809} a^{10} - \frac{636523759856630913884637184294339145120355}{3078865357451524208298983284371091693344809} a^{9} - \frac{1389725285228058886493018745707269803774687}{3078865357451524208298983284371091693344809} a^{8} + \frac{769827826353034546943522926294293498785734}{3078865357451524208298983284371091693344809} a^{7} - \frac{808695379482920829986582964351903709692428}{3078865357451524208298983284371091693344809} a^{6} - \frac{917814615448521417181074841972730970551467}{3078865357451524208298983284371091693344809} a^{5} + \frac{1361211976233616322600032610160746256990023}{3078865357451524208298983284371091693344809} a^{4} + \frac{301884857507769628932759778452963801032147}{3078865357451524208298983284371091693344809} a^{3} + \frac{965283542800855591402857749800402565296915}{3078865357451524208298983284371091693344809} a^{2} + \frac{429147349438325676232017139385808159892111}{3078865357451524208298983284371091693344809} a + \frac{1458961645392241234017703331639251647939913}{3078865357451524208298983284371091693344809}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{17618731022959867959248}{4465877815618430433407869} a^{19} - \frac{10101074623062369874615}{4465877815618430433407869} a^{18} + \frac{72292419133595428682988}{4465877815618430433407869} a^{17} - \frac{321993102129212726949666}{4465877815618430433407869} a^{16} + \frac{768702395775617619904762}{4465877815618430433407869} a^{15} - \frac{898471964100147183743353}{4465877815618430433407869} a^{14} + \frac{82922137134440470643033}{4465877815618430433407869} a^{13} + \frac{3143477983963463152701297}{4465877815618430433407869} a^{12} - \frac{10446199950048833722389076}{4465877815618430433407869} a^{11} + \frac{28973715772546859965922560}{4465877815618430433407869} a^{10} - \frac{90806191763836050499291836}{4465877815618430433407869} a^{9} + \frac{177955232403748384259505989}{4465877815618430433407869} a^{8} - \frac{97039317701853641789631739}{4465877815618430433407869} a^{7} - \frac{375764471851052557227144968}{4465877815618430433407869} a^{6} + \frac{1150479769580264703486961464}{4465877815618430433407869} a^{5} - \frac{1541806340084264902664908350}{4465877815618430433407869} a^{4} + \frac{1153129618401089039402914133}{4465877815618430433407869} a^{3} - \frac{532300554970919881127707912}{4465877815618430433407869} a^{2} + \frac{147307136450668009056102309}{4465877815618430433407869} a - \frac{22804534311738093680440785}{4465877815618430433407869} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6876702.94829 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 122880 |
| The 108 conjugacy class representatives for t20n797 are not computed |
| Character table for t20n797 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 5.5.36497.1, 10.0.1363999753216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 36497 | Data not computed | ||||||