Normalized defining polynomial
\( x^{20} + 392 x^{18} + 64729 x^{16} + 5859812 x^{14} + 317172100 x^{12} + 10503433808 x^{10} + 209130391771 x^{8} + 2359546225988 x^{6} + 13317837505399 x^{4} + 28830230985080 x^{2} + 149429406721 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16863534401027144382603387201975746560000000000=2^{40}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $204.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(1091,·)$, $\chi_{3080}(69,·)$, $\chi_{3080}(519,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(1931,·)$, $\chi_{3080}(1359,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(2771,·)$, $\chi_{3080}(2199,·)$, $\chi_{3080}(1371,·)$, $\chi_{3080}(2589,·)$, $\chi_{3080}(799,·)$, $\chi_{3080}(1189,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(811,·)$, $\chi_{3080}(2029,·)$, $\chi_{3080}(239,·)$, $\chi_{3080}(2869,·)$, $\chi_{3080}(1401,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{2401} a^{8}$, $\frac{1}{2401} a^{9}$, $\frac{1}{16807} a^{10}$, $\frac{1}{386561} a^{11} + \frac{10}{55223} a^{9} + \frac{5}{7889} a^{7} + \frac{9}{1127} a^{5} - \frac{1}{23} a^{3} + \frac{5}{23} a$, $\frac{1}{1604614711} a^{12} - \frac{4705}{229230673} a^{10} - \frac{5354}{32747239} a^{8} - \frac{3740}{4678177} a^{6} + \frac{4846}{668311} a^{4} - \frac{3560}{95473} a^{2} + \frac{101}{593}$, $\frac{1}{1604614711} a^{13} + \frac{39}{229230673} a^{11} + \frac{167}{4678177} a^{9} + \frac{6341}{4678177} a^{7} + \frac{6625}{668311} a^{5} + \frac{4149}{95473} a^{3} - \frac{1235}{13639} a$, $\frac{1}{11232302977} a^{14} - \frac{6282}{229230673} a^{10} - \frac{3077}{32747239} a^{8} + \frac{2456}{4678177} a^{6} + \frac{6101}{668311} a^{4} + \frac{1215}{95473} a^{2} + \frac{212}{593}$, $\frac{1}{11232302977} a^{15} + \frac{241}{229230673} a^{11} - \frac{6042}{32747239} a^{9} - \frac{5846}{4678177} a^{7} - \frac{3387}{668311} a^{5} - \frac{3529}{95473} a^{3} - \frac{3426}{13639} a$, $\frac{1}{78626120839} a^{16} - \frac{4174}{229230673} a^{10} + \frac{2402}{32747239} a^{8} - \frac{2221}{4678177} a^{6} + \frac{1539}{668311} a^{4} - \frac{4723}{95473} a^{2} - \frac{28}{593}$, $\frac{1}{78626120839} a^{17} - \frac{1}{9966551} a^{11} + \frac{2995}{32747239} a^{9} + \frac{4895}{4678177} a^{7} - \frac{2019}{668311} a^{5} - \frac{6502}{95473} a^{3} + \frac{6472}{13639} a$, $\frac{1}{550382845873} a^{18} + \frac{556}{32747239} a^{10} + \frac{4504}{32747239} a^{8} - \frac{6205}{4678177} a^{6} - \frac{4156}{668311} a^{4} + \frac{918}{13639} a^{2} - \frac{49}{593}$, $\frac{1}{550382845873} a^{19} - \frac{37}{32747239} a^{11} + \frac{3911}{32747239} a^{9} + \frac{318}{4678177} a^{7} - \frac{26}{29057} a^{5} - \frac{5434}{95473} a^{3} + \frac{5396}{13639} a$
Class group and class number
$C_{2}\times C_{4}\times C_{5225204}$, which has order $41801632$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11184526.893275889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-154}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{55}, \sqrt{-70})\), \(\Q(\zeta_{11})^+\), 10.0.1298596719579529216.1, 10.0.368919522607820800000.1, 10.10.7545432611200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||