Normalized defining polynomial
\( x^{20} + 8 x^{18} + 97 x^{16} - 236 x^{14} + 7044 x^{12} - 90608 x^{10} + 1279523 x^{8} - 17903884 x^{6} + 250659095 x^{4} - 3509226120 x^{2} + 49129165801 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16863534401027144382603387201975746560000000000=2^{40}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $204.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(181,·)$, $\chi_{3080}(3079,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(2059,·)$, $\chi_{3080}(1679,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(659,·)$, $\chi_{3080}(1301,·)$, $\chi_{3080}(2899,·)$, $\chi_{3080}(1119,·)$, $\chi_{3080}(2339,·)$, $\chi_{3080}(741,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(1779,·)$, $\chi_{3080}(2421,·)$, $\chi_{3080}(1399,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(1021,·)$, $\chi_{3080}(2239,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{221651} a^{11} + \frac{11}{221651} a^{9} + \frac{44}{221651} a^{7} + \frac{77}{221651} a^{5} + \frac{55}{221651} a^{3} + \frac{11}{221651} a$, $\frac{1}{58130412911} a^{12} - \frac{4878316848}{58130412911} a^{10} + \frac{9347244365}{58130412911} a^{8} + \frac{3650148745}{58130412911} a^{6} - \frac{11394191251}{58130412911} a^{4} - \frac{5697095642}{58130412911} a^{2} - \frac{44018}{262261}$, $\frac{1}{58130412911} a^{13} + \frac{13}{58130412911} a^{11} + \frac{4878316925}{58130412911} a^{9} - \frac{14225561015}{58130412911} a^{7} + \frac{15453729580}{58130412911} a^{5} - \frac{28041732842}{58130412911} a^{3} - \frac{14225561158}{58130412911} a$, $\frac{1}{58130412911} a^{14} + \frac{10166023038}{58130412911} a^{10} - \frac{19478911938}{58130412911} a^{8} + \frac{26132208806}{58130412911} a^{6} + \frac{3821927599}{58130412911} a^{4} + \frac{1706269277}{58130412911} a^{2} + \frac{47712}{262261}$, $\frac{1}{58130412911} a^{15} - \frac{105}{58130412911} a^{11} - \frac{15044340689}{58130412911} a^{9} - \frac{619996483}{2527409257} a^{7} - \frac{23266486569}{58130412911} a^{5} + \frac{23879125522}{58130412911} a^{3} + \frac{15009983761}{58130412911} a$, $\frac{1}{58130412911} a^{16} - \frac{4093893530}{58130412911} a^{10} - \frac{21016280271}{58130412911} a^{8} + \frac{11216654190}{58130412911} a^{6} - \frac{9902697613}{58130412911} a^{4} - \frac{1880929539}{58130412911} a^{2} + \frac{98808}{262261}$, $\frac{1}{58130412911} a^{17} + \frac{680}{58130412911} a^{11} + \frac{24016556039}{58130412911} a^{9} + \frac{16956760697}{58130412911} a^{7} + \frac{14675092002}{58130412911} a^{5} - \frac{9238399633}{58130412911} a^{3} + \frac{8803315407}{58130412911} a$, $\frac{1}{58130412911} a^{18} + \frac{27838476752}{58130412911} a^{10} - \frac{2954400204}{58130412911} a^{8} - \frac{25948712336}{58130412911} a^{6} + \frac{7466733884}{58130412911} a^{4} - \frac{11909313070}{58130412911} a^{2} + \frac{34486}{262261}$, $\frac{1}{58130412911} a^{19} - \frac{3876}{58130412911} a^{11} - \frac{18525622557}{58130412911} a^{9} + \frac{28027224074}{58130412911} a^{7} + \frac{640391445}{2527409257} a^{5} + \frac{26495400987}{58130412911} a^{3} - \frac{7927365967}{58130412911} a$
Class group and class number
$C_{22}\times C_{22}\times C_{22088}$, which has order $10690592$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 70462385.66386804 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.2 | $x^{10} - 625 x^{2} + 6250$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||