Normalized defining polynomial
\( x^{20} + 150 x^{18} + 12325 x^{16} + 618840 x^{14} + 21746530 x^{12} + 521554516 x^{10} + 9387080850 x^{8} + 111162014200 x^{6} + 1253186524445 x^{4} + 5656755393990 x^{2} + 110525629055689 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16863534401027144382603387201975746560000000000=2^{40}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $204.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(1539,·)$, $\chi_{3080}(699,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(139,·)$, $\chi_{3080}(2829,·)$, $\chi_{3080}(589,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(1429,·)$, $\chi_{3080}(2071,·)$, $\chi_{3080}(29,·)$, $\chi_{3080}(2659,·)$, $\chi_{3080}(1511,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(111,·)$, $\chi_{3080}(2549,·)$, $\chi_{3080}(951,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(2939,·)$, $\chi_{3080}(1791,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{20} a^{4} - \frac{1}{5} a^{2} - \frac{1}{20}$, $\frac{1}{20} a^{5} - \frac{1}{5} a^{3} - \frac{1}{20} a$, $\frac{1}{40} a^{6} - \frac{1}{40} a^{4} + \frac{7}{40} a^{2} + \frac{17}{40}$, $\frac{1}{40} a^{7} - \frac{1}{40} a^{5} + \frac{7}{40} a^{3} + \frac{17}{40} a$, $\frac{1}{400} a^{8} + \frac{1}{200} a^{6} + \frac{1}{100} a^{4} + \frac{39}{200} a^{2} + \frac{171}{400}$, $\frac{1}{400} a^{9} + \frac{1}{200} a^{7} + \frac{1}{100} a^{5} + \frac{39}{200} a^{3} + \frac{171}{400} a$, $\frac{1}{800} a^{10} - \frac{1}{800} a^{8} - \frac{1}{400} a^{6} - \frac{7}{400} a^{4} - \frac{143}{800} a^{2} - \frac{33}{800}$, $\frac{1}{1600} a^{11} - \frac{1}{1600} a^{10} - \frac{1}{1600} a^{9} + \frac{1}{1600} a^{8} + \frac{9}{800} a^{7} - \frac{9}{800} a^{6} - \frac{17}{800} a^{5} + \frac{17}{800} a^{4} + \frac{397}{1600} a^{3} - \frac{397}{1600} a^{2} - \frac{93}{1600} a + \frac{93}{1600}$, $\frac{1}{8000} a^{12} - \frac{1}{4000} a^{10} - \frac{1}{1600} a^{8} + \frac{3}{400} a^{6} - \frac{29}{1600} a^{4} - \frac{381}{4000} a^{2} - \frac{171}{8000}$, $\frac{1}{16000} a^{13} - \frac{1}{16000} a^{12} - \frac{1}{8000} a^{11} + \frac{1}{8000} a^{10} - \frac{1}{3200} a^{9} + \frac{1}{3200} a^{8} + \frac{3}{800} a^{7} - \frac{3}{800} a^{6} - \frac{29}{3200} a^{5} + \frac{29}{3200} a^{4} + \frac{1619}{8000} a^{3} - \frac{1619}{8000} a^{2} - \frac{4171}{16000} a + \frac{4171}{16000}$, $\frac{1}{16000} a^{14} - \frac{1}{16000} a^{12} - \frac{7}{16000} a^{10} + \frac{3}{3200} a^{8} - \frac{33}{3200} a^{6} - \frac{267}{16000} a^{4} + \frac{747}{16000} a^{2} + \frac{189}{16000}$, $\frac{1}{32000} a^{15} - \frac{1}{32000} a^{14} - \frac{1}{32000} a^{13} + \frac{1}{32000} a^{12} - \frac{7}{32000} a^{11} + \frac{7}{32000} a^{10} - \frac{1}{1280} a^{9} + \frac{1}{1280} a^{8} - \frac{49}{6400} a^{7} + \frac{49}{6400} a^{6} - \frac{427}{32000} a^{5} + \frac{427}{32000} a^{4} + \frac{5627}{32000} a^{3} - \frac{5627}{32000} a^{2} - \frac{14651}{32000} a + \frac{14651}{32000}$, $\frac{1}{160000} a^{16} + \frac{1}{40000} a^{14} - \frac{1}{20000} a^{12} + \frac{3}{40000} a^{10} + \frac{17}{16000} a^{8} - \frac{273}{40000} a^{6} + \frac{61}{5000} a^{4} - \frac{9971}{40000} a^{2} - \frac{9539}{160000}$, $\frac{1}{320000} a^{17} - \frac{1}{320000} a^{16} + \frac{1}{80000} a^{15} - \frac{1}{80000} a^{14} - \frac{1}{40000} a^{13} + \frac{1}{40000} a^{12} + \frac{3}{80000} a^{11} - \frac{3}{80000} a^{10} + \frac{17}{32000} a^{9} - \frac{17}{32000} a^{8} + \frac{727}{80000} a^{7} - \frac{727}{80000} a^{6} - \frac{4}{625} a^{5} + \frac{4}{625} a^{4} + \frac{17029}{80000} a^{3} - \frac{17029}{80000} a^{2} - \frac{21539}{320000} a + \frac{21539}{320000}$, $\frac{1}{92835336148329140747135782579520000} a^{18} + \frac{49058146126192182224779827431}{92835336148329140747135782579520000} a^{16} - \frac{45192509650732028776281160153}{4641766807416457037356789128976000} a^{14} + \frac{128629502686295105266614756559}{23208834037082285186783945644880000} a^{12} + \frac{5338803084674168996949559270827}{46417668074164570373567891289760000} a^{10} + \frac{3494377462862975517592727354049}{46417668074164570373567891289760000} a^{8} + \frac{15257013819562014155377542022667}{23208834037082285186783945644880000} a^{6} + \frac{67411498008845110836017501134127}{4641766807416457037356789128976000} a^{4} - \frac{7384568605187442334910748233747087}{92835336148329140747135782579520000} a^{2} + \frac{26704438372989617991460999759396527}{92835336148329140747135782579520000}$, $\frac{1}{1951977501323427222368211794290111127680000} a^{19} - \frac{1}{185670672296658281494271565159040000} a^{18} - \frac{1127662075822844040606331082233985179}{1951977501323427222368211794290111127680000} a^{17} + \frac{531162704800864947444818813691}{185670672296658281494271565159040000} a^{16} + \frac{96171377160213208913305154596191041}{24399718766542840279602647428626389096000} a^{15} - \frac{322184364068462775311496080459}{23208834037082285186783945644880000} a^{14} - \frac{1664667732035592580465837881192206209}{121998593832714201398013237143131945480000} a^{13} + \frac{80740461388616729784092282001}{23208834037082285186783945644880000} a^{12} - \frac{16226018713689054356609394797070945283}{975988750661713611184105897145055563840000} a^{11} - \frac{1582873331574821585898235163881}{3713413445933165629885431303180800} a^{10} - \frac{800394236585545215105271437962904151551}{975988750661713611184105897145055563840000} a^{9} + \frac{60329916139113308746063123169371}{92835336148329140747135782579520000} a^{8} + \frac{2838985318248333960898620124838420025011}{243997187665428402796026474286263890960000} a^{7} + \frac{30926469994367042100122833131513}{11604417018541142593391972822440000} a^{6} + \frac{509436602727914004878809666615032374519}{48799437533085680559205294857252778192000} a^{5} - \frac{105224850750796327354336127328191}{11604417018541142593391972822440000} a^{4} - \frac{213706303770190197249191907180551550585827}{1951977501323427222368211794290111127680000} a^{3} + \frac{15070173996567241074514251834049099}{185670672296658281494271565159040000} a^{2} - \frac{836261607035968242688513955024816371903983}{1951977501323427222368211794290111127680000} a + \frac{13594155618725844182771416022224267}{37134134459331656298854313031808000}$
Class group and class number
$C_{2}\times C_{2}\times C_{12124848}$, which has order $48499392$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8013735.512306594 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-770}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-110}) \), \(\Q(\sqrt{7}, \sqrt{-110})\), \(\Q(\zeta_{11})^+\), 10.0.4058114748686028800000.1, 10.10.3689195226078208.1, 10.0.241453843558400000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | R | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 7.10.5.1 | $x^{10} - 98 x^{6} + 2401 x^{2} - 268912$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11 | Data not computed | ||||||