Normalized defining polynomial
\( x^{20} + 30 x^{18} + 3265 x^{16} + 96630 x^{14} + 4425040 x^{12} + 110497408 x^{10} + 2949712395 x^{8} + 53381523010 x^{6} + 863742291395 x^{4} + 8871244946010 x^{2} + 65144737570441 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16863534401027144382603387201975746560000000000=2^{40}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $204.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(1539,·)$, $\chi_{3080}(699,·)$, $\chi_{3080}(519,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(139,·)$, $\chi_{3080}(1359,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(1301,·)$, $\chi_{3080}(2199,·)$, $\chi_{3080}(799,·)$, $\chi_{3080}(2659,·)$, $\chi_{3080}(741,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(239,·)$, $\chi_{3080}(181,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(2939,·)$, $\chi_{3080}(1021,·)$, $\chi_{3080}(2421,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4} - \frac{2}{5} a^{2} + \frac{1}{5}$, $\frac{1}{5} a^{5} - \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{5} a^{6} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{5} a^{7} + \frac{2}{5} a^{3} + \frac{2}{5} a$, $\frac{1}{25} a^{8} + \frac{1}{25} a^{6} + \frac{1}{25} a^{4} - \frac{9}{25} a^{2} + \frac{6}{25}$, $\frac{1}{25} a^{9} + \frac{1}{25} a^{7} + \frac{1}{25} a^{5} - \frac{9}{25} a^{3} + \frac{6}{25} a$, $\frac{1}{50} a^{10} - \frac{1}{50} a^{8} + \frac{2}{25} a^{6} - \frac{1}{50} a^{4} - \frac{11}{50} a^{2} - \frac{17}{50}$, $\frac{1}{50} a^{11} - \frac{1}{50} a^{9} + \frac{2}{25} a^{7} - \frac{1}{50} a^{5} - \frac{11}{50} a^{3} - \frac{17}{50} a$, $\frac{1}{250} a^{12} - \frac{1}{250} a^{10} + \frac{3}{50} a^{6} - \frac{1}{10} a^{4} - \frac{121}{250} a^{2} + \frac{3}{125}$, $\frac{1}{250} a^{13} - \frac{1}{250} a^{11} + \frac{3}{50} a^{7} - \frac{1}{10} a^{5} - \frac{121}{250} a^{3} + \frac{3}{125} a$, $\frac{1}{250} a^{14} - \frac{1}{250} a^{10} - \frac{1}{50} a^{8} + \frac{2}{25} a^{6} - \frac{8}{125} a^{4} + \frac{23}{50} a^{2} - \frac{57}{125}$, $\frac{1}{11500} a^{15} - \frac{1}{500} a^{14} - \frac{11}{11500} a^{13} + \frac{1}{2300} a^{11} - \frac{1}{125} a^{10} + \frac{6}{575} a^{9} - \frac{1}{50} a^{8} - \frac{219}{2300} a^{7} - \frac{1}{50} a^{6} - \frac{433}{5750} a^{5} - \frac{49}{500} a^{4} - \frac{929}{11500} a^{3} + \frac{7}{50} a^{2} + \frac{61}{460} a + \frac{129}{500}$, $\frac{1}{57500} a^{16} + \frac{3}{14375} a^{14} - \frac{1}{500} a^{13} - \frac{87}{57500} a^{12} + \frac{1}{500} a^{11} - \frac{193}{28750} a^{10} + \frac{149}{11500} a^{8} - \frac{3}{100} a^{7} - \frac{964}{14375} a^{6} + \frac{1}{20} a^{5} + \frac{1027}{14375} a^{4} + \frac{121}{500} a^{3} - \frac{24143}{57500} a^{2} + \frac{61}{125} a - \frac{903}{2500}$, $\frac{1}{57500} a^{17} + \frac{1}{28750} a^{15} - \frac{1}{500} a^{14} + \frac{1}{2500} a^{13} - \frac{1}{500} a^{12} - \frac{109}{14375} a^{11} + \frac{1}{250} a^{10} - \frac{91}{11500} a^{9} + \frac{1}{100} a^{8} - \frac{2203}{28750} a^{7} + \frac{3}{100} a^{6} + \frac{317}{14375} a^{5} - \frac{9}{500} a^{4} - \frac{14853}{57500} a^{3} + \frac{103}{250} a^{2} - \frac{13019}{57500} a - \frac{23}{125}$, $\frac{1}{3504557757495352304319063724440237417500} a^{18} - \frac{1442036396545252734641294949215037}{700911551499070460863812744888047483500} a^{16} - \frac{1581449396359431381766850330424253189}{876139439373838076079765931110059354375} a^{14} - \frac{1}{500} a^{13} - \frac{3466025911035167325470000798401819357}{3504557757495352304319063724440237417500} a^{12} - \frac{1}{125} a^{11} - \frac{13173280566096004778343833248945453173}{3504557757495352304319063724440237417500} a^{10} + \frac{1}{100} a^{9} + \frac{34141425897986106642899389565938069879}{3504557757495352304319063724440237417500} a^{8} - \frac{7}{100} a^{7} + \frac{8566348684005189280734935129972170667}{175227887874767615215953186222011870875} a^{6} + \frac{3}{50} a^{5} + \frac{4315795294475653863754595788138436984}{876139439373838076079765931110059354375} a^{4} - \frac{37}{250} a^{3} + \frac{218738344420674781284178076620241514028}{876139439373838076079765931110059354375} a^{2} - \frac{171}{500} a - \frac{13635737857068153095697226036532992866}{38093019103210351133902866570002580625}$, $\frac{1}{1229829921933541516688558799371741435261352500} a^{19} + \frac{29015271438110980712234585029005701351}{4919319687734166066754235197486965741045410} a^{17} - \frac{14470397523150820892474521449417956886391}{1229829921933541516688558799371741435261352500} a^{15} - \frac{1}{500} a^{14} + \frac{57245057930338422827716326120625624104681}{53470866171023544203850382581380062402667500} a^{13} - \frac{1}{500} a^{12} + \frac{116701991192335361118840152670233820098371}{13367716542755886050962595645345015600666875} a^{11} - \frac{3}{500} a^{10} - \frac{3616883630823289972768725857964455043116624}{307457480483385379172139699842935358815338125} a^{9} - \frac{1}{50} a^{8} - \frac{12475961147555673661824771517463469478022099}{245965984386708303337711759874348287052270500} a^{7} - \frac{1}{20} a^{6} - \frac{5733602414334444955836996611494192366771001}{307457480483385379172139699842935358815338125} a^{5} - \frac{6}{125} a^{4} + \frac{135537222798134934909711269699016886803606173}{307457480483385379172139699842935358815338125} a^{3} + \frac{191}{500} a^{2} - \frac{117948649303326609171190850961377094470391963}{307457480483385379172139699842935358815338125} a - \frac{127}{500}$
Class group and class number
$C_{2}\times C_{88}\times C_{364408}$, which has order $64135808$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11184526.893275889 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-770}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{55}) \), \(\Q(\sqrt{-14}, \sqrt{55})\), \(\Q(\zeta_{11})^+\), 10.0.4058114748686028800000.1, 10.0.118054247234502656.1, 10.10.7545432611200000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/23.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 5.10.5.1 | $x^{10} - 50 x^{6} + 625 x^{2} - 12500$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||