Normalized defining polynomial
\( x^{20} + 54 x^{18} + 3961 x^{16} + 98526 x^{14} + 3954160 x^{12} + 38824576 x^{10} + 1604479779 x^{8} - 2034260966 x^{6} + 399450190019 x^{4} - 2497505487390 x^{2} + 51445143565729 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16863534401027144382603387201975746560000000000=2^{40}\cdot 5^{10}\cdot 7^{10}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $204.81$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3080=2^{3}\cdot 5\cdot 7\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3080}(1,·)$, $\chi_{3080}(1539,·)$, $\chi_{3080}(1989,·)$, $\chi_{3080}(391,·)$, $\chi_{3080}(841,·)$, $\chi_{3080}(139,·)$, $\chi_{3080}(1231,·)$, $\chi_{3080}(1681,·)$, $\chi_{3080}(699,·)$, $\chi_{3080}(2269,·)$, $\chi_{3080}(2911,·)$, $\chi_{3080}(2659,·)$, $\chi_{3080}(1961,·)$, $\chi_{3080}(2631,·)$, $\chi_{3080}(1709,·)$, $\chi_{3080}(2351,·)$, $\chi_{3080}(309,·)$, $\chi_{3080}(1401,·)$, $\chi_{3080}(2939,·)$, $\chi_{3080}(1149,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{7} a^{4} + \frac{1}{7} a^{2} + \frac{2}{7}$, $\frac{1}{7} a^{5} + \frac{1}{7} a^{3} + \frac{2}{7} a$, $\frac{1}{7} a^{6} + \frac{1}{7} a^{2} - \frac{2}{7}$, $\frac{1}{7} a^{7} + \frac{1}{7} a^{3} - \frac{2}{7} a$, $\frac{1}{49} a^{8} + \frac{2}{49} a^{6} - \frac{2}{49} a^{4} - \frac{3}{49} a^{2} - \frac{10}{49}$, $\frac{1}{49} a^{9} + \frac{2}{49} a^{7} - \frac{2}{49} a^{5} - \frac{3}{49} a^{3} - \frac{10}{49} a$, $\frac{1}{98} a^{10} - \frac{1}{98} a^{8} + \frac{3}{49} a^{6} + \frac{3}{98} a^{4} + \frac{13}{98} a^{2} - \frac{47}{98}$, $\frac{1}{98} a^{11} - \frac{1}{98} a^{9} + \frac{3}{49} a^{7} + \frac{3}{98} a^{5} + \frac{13}{98} a^{3} - \frac{47}{98} a$, $\frac{1}{686} a^{12} + \frac{3}{686} a^{10} + \frac{1}{343} a^{8} - \frac{1}{686} a^{6} - \frac{17}{686} a^{4} + \frac{327}{686} a^{2} - \frac{10}{343}$, $\frac{1}{686} a^{13} + \frac{3}{686} a^{11} + \frac{1}{343} a^{9} - \frac{1}{686} a^{7} - \frac{17}{686} a^{5} + \frac{327}{686} a^{3} - \frac{10}{343} a$, $\frac{1}{686} a^{14} - \frac{3}{49} a^{6} - \frac{3}{98} a^{4} - \frac{5}{49} a^{2} - \frac{311}{686}$, $\frac{1}{1372} a^{15} - \frac{1}{1372} a^{14} - \frac{1}{1372} a^{13} - \frac{3}{1372} a^{11} - \frac{1}{686} a^{9} - \frac{1}{98} a^{8} - \frac{41}{1372} a^{7} + \frac{1}{98} a^{6} + \frac{47}{686} a^{5} - \frac{1}{28} a^{4} + \frac{387}{1372} a^{3} + \frac{1}{98} a^{2} + \frac{591}{1372} a - \frac{431}{1372}$, $\frac{1}{9604} a^{16} + \frac{1}{2401} a^{14} - \frac{1}{1372} a^{13} - \frac{1}{1372} a^{12} - \frac{3}{1372} a^{11} + \frac{1}{686} a^{10} + \frac{3}{343} a^{9} - \frac{13}{1372} a^{8} + \frac{29}{1372} a^{7} + \frac{22}{343} a^{6} - \frac{11}{1372} a^{5} - \frac{1}{343} a^{4} + \frac{317}{1372} a^{3} + \frac{809}{9604} a^{2} - \frac{30}{343} a + \frac{1367}{9604}$, $\frac{1}{220892} a^{17} - \frac{73}{220892} a^{15} - \frac{11}{15778} a^{13} - \frac{1}{1372} a^{12} + \frac{135}{31556} a^{11} + \frac{1}{343} a^{10} + \frac{197}{31556} a^{9} + \frac{5}{1372} a^{8} + \frac{291}{31556} a^{7} - \frac{27}{1372} a^{6} - \frac{597}{15778} a^{5} + \frac{5}{686} a^{4} - \frac{51707}{110446} a^{3} + \frac{155}{686} a^{2} + \frac{13801}{55223} a + \frac{433}{1372}$, $\frac{1}{15289862426346454063112930884148466082564} a^{18} + \frac{55579637453740477578733415228132189}{2184266060906636294730418697735495154652} a^{16} - \frac{31805053319297209682491928736830397}{58358253535673488790507369786826206422} a^{14} - \frac{1}{1372} a^{13} + \frac{503324917713788145146263027774713269}{2184266060906636294730418697735495154652} a^{12} + \frac{1}{343} a^{11} - \frac{9454788061942079579541476007586465973}{2184266060906636294730418697735495154652} a^{10} + \frac{5}{1372} a^{9} - \frac{17818101804946003297901224565658715449}{2184266060906636294730418697735495154652} a^{8} - \frac{27}{1372} a^{7} - \frac{19626202237680363115588647955558765668}{546066515226659073682604674433873788663} a^{6} + \frac{5}{686} a^{5} - \frac{62100827313840993223127614909996287650}{3822465606586613515778232721037116520641} a^{4} + \frac{155}{686} a^{3} + \frac{2864000381054047711980451456025587407}{22288429192924860150310394874851991374} a^{2} + \frac{433}{1372} a - \frac{11285335608373249092199720472060873802}{166194156808113631120792727001613761767}$, $\frac{1}{4768128307793715353127704383290814999381500836} a^{19} - \frac{5026413131508597710557077737526636980151}{4768128307793715353127704383290814999381500836} a^{17} + \frac{3772209438851263188501291400591715773303}{36397926013692483611661865521303931292988556} a^{15} - \frac{118791023995925080676576455996885597238798}{170290296706918405468846585117529107120767887} a^{13} - \frac{236651320633727017859483919776444483497823}{48654370487690972991099024319294030605933682} a^{11} - \frac{1}{196} a^{10} + \frac{3343391089533057079984236013557576808123647}{681161186827673621875386340470116428483071548} a^{9} + \frac{1}{196} a^{8} - \frac{381430920785785530215884999441194965050569}{29615703775116244429364623498700714281872676} a^{7} + \frac{2}{49} a^{6} - \frac{63556306276502484923678630526569741316421813}{1192032076948428838281926095822703749845375209} a^{5} - \frac{3}{196} a^{4} + \frac{2030594550267007578357964308151304799333450155}{4768128307793715353127704383290814999381500836} a^{3} + \frac{1}{196} a^{2} + \frac{2044199109697410787681745115793008275458661063}{4768128307793715353127704383290814999381500836} a - \frac{79}{196}$
Class group and class number
$C_{2}\times C_{8}\times C_{2053936}$, which has order $32862976$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14452469.589232503 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{10}$ (as 20T3):
| An abelian group of order 20 |
| The 20 conjugacy class representatives for $C_2\times C_{10}$ |
| Character table for $C_2\times C_{10}$ |
Intermediate fields
| \(\Q(\sqrt{-77}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-770}) \), \(\Q(\sqrt{10}, \sqrt{-77})\), \(\Q(\zeta_{11})^+\), 10.0.40581147486860288.1, 10.10.21950349414400000.1, 10.0.4058114748686028800000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.5.0.1}{5} }^{4}$ | R | R | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/43.1.0.1}{1} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 11 | Data not computed | ||||||