Normalized defining polynomial
\( x^{20} - 2 x^{19} + 10 x^{18} + 12 x^{17} + 14 x^{16} + 44 x^{15} - 268 x^{14} + 668 x^{13} + 6945 x^{12} + 11260 x^{11} + 21262 x^{10} + 61954 x^{9} + 99859 x^{8} + 97580 x^{7} + 101736 x^{6} - 18128 x^{5} - 201043 x^{4} - 289242 x^{3} - 17626 x^{2} + 111368 x + 145993 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1670627195488492909044967149666304=2^{30}\cdot 11^{18}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{43} a^{18} - \frac{3}{43} a^{17} - \frac{17}{43} a^{16} - \frac{10}{43} a^{15} + \frac{18}{43} a^{14} - \frac{18}{43} a^{13} - \frac{16}{43} a^{12} + \frac{20}{43} a^{11} + \frac{9}{43} a^{10} - \frac{13}{43} a^{9} + \frac{21}{43} a^{8} + \frac{16}{43} a^{7} + \frac{12}{43} a^{6} - \frac{6}{43} a^{5} - \frac{12}{43} a^{4} - \frac{5}{43} a^{3} + \frac{3}{43} a^{2} - \frac{6}{43} a + \frac{6}{43}$, $\frac{1}{117539593275039432375337540688671064916534395191852097114761} a^{19} + \frac{20691457706853414082568721740451081491836865895373961542}{5110417098914757929362501769072654996371060660515308570207} a^{18} + \frac{20224018152850007385589482963803850572569487529185463019280}{117539593275039432375337540688671064916534395191852097114761} a^{17} + \frac{4150548123722069886005552907729230098512820728348992167689}{117539593275039432375337540688671064916534395191852097114761} a^{16} + \frac{54694714903189624606108372236257897953793185154773975027381}{117539593275039432375337540688671064916534395191852097114761} a^{15} + \frac{9615200222723418437687362379254244944466574670225576540989}{117539593275039432375337540688671064916534395191852097114761} a^{14} - \frac{29249669930826817652248406912144274729452699216544808590354}{117539593275039432375337540688671064916534395191852097114761} a^{13} - \frac{48299085648838604272558077004753731970868798651732268913283}{117539593275039432375337540688671064916534395191852097114761} a^{12} - \frac{325170122325863241720507881894665883761950885161034209553}{5110417098914757929362501769072654996371060660515308570207} a^{11} + \frac{55983398694996489901255132035833964973107867777259216034217}{117539593275039432375337540688671064916534395191852097114761} a^{10} - \frac{30838978958104451546205582263597178903720770905148722675513}{117539593275039432375337540688671064916534395191852097114761} a^{9} - \frac{66302013526406513411147165467471241355151063619485617988}{2733478913373010055240407922992350346896148725391909235227} a^{8} - \frac{471287834653289857107429756731008151869659601214171939606}{117539593275039432375337540688671064916534395191852097114761} a^{7} + \frac{14584005803970644366442736316969133782703659897804496035634}{117539593275039432375337540688671064916534395191852097114761} a^{6} + \frac{57831140185315957912285811656422705067809831389603791357856}{117539593275039432375337540688671064916534395191852097114761} a^{5} - \frac{52392242919781877220353622683691348000766999606210970233332}{117539593275039432375337540688671064916534395191852097114761} a^{4} - \frac{5143063789102055547003801665733627290904724416484305068967}{117539593275039432375337540688671064916534395191852097114761} a^{3} - \frac{37955248562799085174357396964272271581735354768428833439433}{117539593275039432375337540688671064916534395191852097114761} a^{2} - \frac{53575821297832441401818915563832402902529223541946168120255}{117539593275039432375337540688671064916534395191852097114761} a + \frac{34609433783817808012075584586789724706755209272469885136105}{117539593275039432375337540688671064916534395191852097114761}$
Class group and class number
$C_{2}\times C_{2}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3932685.35305 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.0.55534384018432.1, 10.10.1277290832423936.1, 10.0.5048580365312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $23$ | $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{23}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |