Normalized defining polynomial
\( x^{20} - 4 x^{19} + 8 x^{18} + 200 x^{16} - 1328 x^{15} + 4372 x^{14} - 12254 x^{13} + 31178 x^{12} - 63948 x^{11} + 140920 x^{10} - 242876 x^{9} + 288907 x^{8} - 566126 x^{7} + 836746 x^{6} - 287708 x^{5} - 119520 x^{4} - 97790 x^{3} + 56910 x^{2} + 37372 x + 5039 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1670627195488492909044967149666304=2^{30}\cdot 11^{18}\cdot 23^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 23$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{989} a^{18} - \frac{357}{989} a^{17} - \frac{225}{989} a^{16} + \frac{297}{989} a^{15} + \frac{296}{989} a^{14} - \frac{485}{989} a^{13} - \frac{306}{989} a^{12} + \frac{75}{989} a^{11} + \frac{175}{989} a^{10} - \frac{484}{989} a^{9} + \frac{47}{989} a^{8} + \frac{233}{989} a^{7} + \frac{19}{989} a^{6} + \frac{421}{989} a^{5} + \frac{277}{989} a^{4} + \frac{103}{989} a^{3} + \frac{54}{989} a^{2} + \frac{49}{989} a - \frac{486}{989}$, $\frac{1}{334951962053401944008345505787909350881871393929488541109551} a^{19} - \frac{2164188461652669223960445486486360916958546625583628304}{4999283015722417074751425459521035087789125282529679718053} a^{18} + \frac{46163782783807997193362980629991397072858200615448234631374}{334951962053401944008345505787909350881871393929488541109551} a^{17} + \frac{3841683538167411544580972256603434771457285437412126109458}{7789580512869812651356872227625798857717939393709035839757} a^{16} + \frac{59967950460947093249196932958312295090344280477042435409678}{334951962053401944008345505787909350881871393929488541109551} a^{15} - \frac{45967547097668209241038123200605799644262935424852399104161}{334951962053401944008345505787909350881871393929488541109551} a^{14} - \frac{6577770640750408146027330637201180554303706240735968260821}{334951962053401944008345505787909350881871393929488541109551} a^{13} - \frac{128874123716253922574204215433569294188573487438878839930827}{334951962053401944008345505787909350881871393929488541109551} a^{12} + \frac{141250184245493059919020781975665193361269542667876998045554}{334951962053401944008345505787909350881871393929488541109551} a^{11} - \frac{35401327078906496244477352412348213704054686543256619037324}{334951962053401944008345505787909350881871393929488541109551} a^{10} - \frac{7730439364789811954901342215733531218408249519243152448356}{334951962053401944008345505787909350881871393929488541109551} a^{9} - \frac{141866547090551098546385148771971015211024927489858768832361}{334951962053401944008345505787909350881871393929488541109551} a^{8} - \frac{3084957300444886197674707038717126091509668313586534444215}{334951962053401944008345505787909350881871393929488541109551} a^{7} + \frac{47317662138815102355580194270138407554740920100322227512989}{334951962053401944008345505787909350881871393929488541109551} a^{6} - \frac{15720895611084039860009606610813183120318767551847808430204}{334951962053401944008345505787909350881871393929488541109551} a^{5} - \frac{42506646460629476962843426004752579811202539395854523950565}{334951962053401944008345505787909350881871393929488541109551} a^{4} + \frac{82963630092160551997812087210576940869066484911151724367522}{334951962053401944008345505787909350881871393929488541109551} a^{3} - \frac{140628528740924649976524863595033150291447195327855304378962}{334951962053401944008345505787909350881871393929488541109551} a^{2} - \frac{134780215577042586816104979946654134398291603904993031105917}{334951962053401944008345505787909350881871393929488541109551} a + \frac{97257810842691072608247234160229956180814561677840795326217}{334951962053401944008345505787909350881871393929488541109551}$
Class group and class number
$C_{2}\times C_{2}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3932685.35305 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_2^4:C_5$ (as 20T74):
| A solvable group of order 320 |
| The 32 conjugacy class representatives for $C_2^2\times C_2^4:C_5$ |
| Character table for $C_2^2\times C_2^4:C_5$ is not computed |
Intermediate fields
| \(\Q(\zeta_{11})^+\), 10.10.1277290832423936.1, 10.0.55534384018432.1, 10.0.5048580365312.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 20 siblings: | data not computed |
| Degree 40 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/5.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{2}$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{12}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.1.1 | $x^{2} - 23$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.1.2 | $x^{2} + 46$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |