Normalized defining polynomial
\( x^{20} - 2 x^{17} - x^{16} + 12 x^{15} + 5 x^{14} - 112 x^{13} + 313 x^{12} - 448 x^{11} + 442 x^{10} - 380 x^{9} + 265 x^{8} - 104 x^{7} + 5 x^{6} + 18 x^{5} - x^{4} - 4 x^{3} + 1 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(16537062841993940409778176=2^{24}\cdot 3^{16}\cdot 389^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $18.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 389$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{1621} a^{18} - \frac{325}{1621} a^{17} + \frac{94}{1621} a^{16} + \frac{704}{1621} a^{15} + \frac{366}{1621} a^{14} - \frac{757}{1621} a^{13} + \frac{480}{1621} a^{12} + \frac{349}{1621} a^{11} + \frac{107}{1621} a^{10} - \frac{760}{1621} a^{9} - \frac{502}{1621} a^{8} + \frac{392}{1621} a^{7} - \frac{36}{1621} a^{6} + \frac{17}{1621} a^{5} + \frac{456}{1621} a^{4} - \frac{251}{1621} a^{3} - \frac{606}{1621} a^{2} + \frac{325}{1621} a - \frac{166}{1621}$, $\frac{1}{15510447587730635} a^{19} + \frac{921189170403}{15510447587730635} a^{18} + \frac{1325655902828179}{15510447587730635} a^{17} - \frac{389341812093203}{3102089517546127} a^{16} - \frac{5827126722030526}{15510447587730635} a^{15} + \frac{5723870613502249}{15510447587730635} a^{14} - \frac{5806086327940168}{15510447587730635} a^{13} - \frac{4340190629231201}{15510447587730635} a^{12} + \frac{1109250139282375}{3102089517546127} a^{11} + \frac{650636017785012}{15510447587730635} a^{10} - \frac{3335484155148982}{15510447587730635} a^{9} - \frac{3206567893589451}{15510447587730635} a^{8} - \frac{7118982883008923}{15510447587730635} a^{7} - \frac{452366673795518}{15510447587730635} a^{6} + \frac{6378443607662316}{15510447587730635} a^{5} + \frac{101582771905588}{330009523143205} a^{4} + \frac{3176140929641592}{15510447587730635} a^{3} + \frac{1787650420293042}{15510447587730635} a^{2} - \frac{997695159117884}{15510447587730635} a - \frac{5107085228052042}{15510447587730635}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1026454468164}{9568443915935} a^{19} + \frac{2672516630162}{9568443915935} a^{18} + \frac{1013241548436}{9568443915935} a^{17} - \frac{301129302918}{1913688783187} a^{16} - \frac{5946015002034}{9568443915935} a^{15} + \frac{7879253075676}{9568443915935} a^{14} + \frac{35027642440353}{9568443915935} a^{13} - \frac{91126858981824}{9568443915935} a^{12} + \frac{6428034651156}{1913688783187} a^{11} + \frac{270175022255118}{9568443915935} a^{10} - \frac{482657774185668}{9568443915935} a^{9} + \frac{461848428709326}{9568443915935} a^{8} - \frac{439573693820967}{9568443915935} a^{7} + \frac{351178980867738}{9568443915935} a^{6} - \frac{138517241402766}{9568443915935} a^{5} + \frac{235549335312}{203583913105} a^{4} + \frac{17234523083103}{9568443915935} a^{3} + \frac{24778925658543}{9568443915935} a^{2} - \frac{9998585763681}{9568443915935} a - \frac{1882240525848}{9568443915935} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 81195.772932 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 204800 |
| The 116 conjugacy class representatives for t20n872 are not computed |
| Character table for t20n872 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 10.0.112960521216.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 389 | Data not computed | ||||||