Normalized defining polynomial
\( x^{20} - 5 x^{19} + 9 x^{18} + 10 x^{17} - 49 x^{16} - 25 x^{15} + 401 x^{14} - 646 x^{13} - 203 x^{12} + 2129 x^{11} - 2237 x^{10} - 1404 x^{9} + 7072 x^{8} - 6760 x^{7} + 1808 x^{6} + 5360 x^{5} - 1860 x^{4} - 560 x^{3} + 3946 x^{2} - 274 x + 1226 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1651502203247820800000000000000=2^{27}\cdot 5^{14}\cdot 17^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $32.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{3209} a^{18} + \frac{404}{3209} a^{17} - \frac{1162}{3209} a^{16} - \frac{194}{3209} a^{15} + \frac{1051}{3209} a^{14} + \frac{246}{3209} a^{13} + \frac{1488}{3209} a^{12} - \frac{673}{3209} a^{11} - \frac{244}{3209} a^{10} - \frac{377}{3209} a^{9} + \frac{642}{3209} a^{8} + \frac{734}{3209} a^{7} - \frac{52}{3209} a^{6} - \frac{927}{3209} a^{5} - \frac{182}{3209} a^{4} + \frac{970}{3209} a^{3} - \frac{305}{3209} a^{2} + \frac{965}{3209} a + \frac{1306}{3209}$, $\frac{1}{1066397840372815142201506398908123819} a^{19} - \frac{54115051266941030428307258192077}{1066397840372815142201506398908123819} a^{18} - \frac{115903480530100543432153193624269991}{1066397840372815142201506398908123819} a^{17} + \frac{423224542213297672716071647069972066}{1066397840372815142201506398908123819} a^{16} + \frac{324834692104213814127398060689265332}{1066397840372815142201506398908123819} a^{15} - \frac{158478726059424150530255444565665505}{1066397840372815142201506398908123819} a^{14} + \frac{262238678761492461758138811875845211}{1066397840372815142201506398908123819} a^{13} + \frac{164366746246189575107117665218131222}{1066397840372815142201506398908123819} a^{12} + \frac{163383656164087077704567299581984248}{1066397840372815142201506398908123819} a^{11} - \frac{54422682281689094926659573795296965}{1066397840372815142201506398908123819} a^{10} + \frac{326471585685815387781618088849202838}{1066397840372815142201506398908123819} a^{9} + \frac{228707851646973256628877982493350663}{1066397840372815142201506398908123819} a^{8} - \frac{328914033275126010872282383285905093}{1066397840372815142201506398908123819} a^{7} - \frac{225820036046642777524754223152863616}{1066397840372815142201506398908123819} a^{6} - \frac{500958800551443592953270088632443372}{1066397840372815142201506398908123819} a^{5} + \frac{77946176665516277977618504316951004}{1066397840372815142201506398908123819} a^{4} + \frac{185610039844142450725612356409927624}{1066397840372815142201506398908123819} a^{3} - \frac{398072425502826969658012773617422237}{1066397840372815142201506398908123819} a^{2} - \frac{38186712938375246795781338876798903}{1066397840372815142201506398908123819} a + \frac{348865639186283469962665687582461941}{1066397840372815142201506398908123819}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9169008.40398 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$D_4\times F_5$ (as 20T42):
| A solvable group of order 160 |
| The 25 conjugacy class representatives for $D_4\times F_5$ |
| Character table for $D_4\times F_5$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.0.57800.1, 5.1.578000.2, 10.2.5679428000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{5}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | $20$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{5}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.10.19.17 | $x^{10} - 2 x^{4} + 4 x^{2} - 10$ | $10$ | $1$ | $19$ | $F_{5}\times C_2$ | $[3]_{5}^{4}$ |
| 2.10.8.1 | $x^{10} - 2 x^{5} + 4$ | $5$ | $2$ | $8$ | $F_5$ | $[\ ]_{5}^{4}$ | |
| 5 | Data not computed | ||||||
| $17$ | 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |