Normalized defining polynomial
\( x^{20} - x^{19} - x^{18} - 9 x^{17} + x^{16} + 12 x^{15} + 41 x^{14} + 24 x^{13} - 49 x^{12} - 103 x^{11} - 54 x^{10} + 46 x^{9} + 127 x^{8} + 118 x^{7} - 22 x^{6} - 124 x^{5} - 70 x^{4} + 12 x^{3} + 32 x^{2} + 16 x + 4 \)
Invariants
| Degree: | $20$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 10]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(164942747145088782041088=2^{24}\cdot 3^{10}\cdot 7^{4}\cdot 37^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4}$, $\frac{1}{674} a^{18} - \frac{11}{674} a^{17} - \frac{83}{337} a^{16} - \frac{21}{337} a^{15} - \frac{49}{337} a^{14} + \frac{73}{674} a^{13} + \frac{156}{337} a^{12} + \frac{41}{337} a^{11} - \frac{30}{337} a^{10} + \frac{189}{674} a^{9} + \frac{65}{674} a^{8} - \frac{7}{674} a^{7} + \frac{183}{674} a^{6} - \frac{62}{337} a^{5} + \frac{95}{674} a^{4} - \frac{123}{337} a^{2} - \frac{112}{337} a - \frac{87}{337}$, $\frac{1}{371767492658} a^{19} - \frac{79181380}{185883746329} a^{18} + \frac{11402511605}{371767492658} a^{17} - \frac{8195885315}{371767492658} a^{16} + \frac{9992986335}{371767492658} a^{15} + \frac{29165331807}{185883746329} a^{14} + \frac{12193677565}{185883746329} a^{13} - \frac{23475217579}{371767492658} a^{12} + \frac{26203645394}{185883746329} a^{11} + \frac{20363171375}{185883746329} a^{10} + \frac{72196177832}{185883746329} a^{9} - \frac{2077598561}{371767492658} a^{8} - \frac{31053558715}{371767492658} a^{7} - \frac{93189839735}{371767492658} a^{6} - \frac{58002168213}{371767492658} a^{5} + \frac{24443091410}{185883746329} a^{4} - \frac{10619091869}{185883746329} a^{3} - \frac{4074582259}{185883746329} a^{2} - \frac{36303647162}{185883746329} a + \frac{44925167669}{185883746329}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $9$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{302111}{1116818} a^{19} - \frac{150572}{558409} a^{18} - \frac{74272}{558409} a^{17} - \frac{2805305}{1116818} a^{16} + \frac{179313}{1116818} a^{15} + \frac{1087476}{558409} a^{14} + \frac{5910996}{558409} a^{13} + \frac{12026}{1657} a^{12} - \frac{8632973}{1116818} a^{11} - \frac{24415003}{1116818} a^{10} - \frac{17412213}{1116818} a^{9} + \frac{1866605}{1116818} a^{8} + \frac{12766778}{558409} a^{7} + \frac{29708577}{1116818} a^{6} + \frac{935338}{558409} a^{5} - \frac{20026961}{1116818} a^{4} - \frac{6109484}{558409} a^{3} - \frac{421624}{558409} a^{2} + \frac{1764582}{558409} a + \frac{964792}{558409} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7879.29030942 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 14745600 |
| The 396 conjugacy class representatives for t20n1036 are not computed |
| Character table for t20n1036 is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 10.0.16691899392.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $20$ | R | ${\href{/LocalNumberField/11.10.0.1}{10} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | $20$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.10 | $x^{8} + 2 x^{6} + 4 x^{5} + 6 x^{4} + 4$ | $4$ | $2$ | $16$ | $D_4\times C_2$ | $[2, 2, 3]^{2}$ |
| 2.12.8.2 | $x^{12} - 8 x^{3} + 16$ | $3$ | $4$ | $8$ | $C_3\times (C_3 : C_4)$ | $[\ ]_{3}^{12}$ | |
| $3$ | 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 3.10.5.2 | $x^{10} - 81 x^{2} + 243$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| $37$ | 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 37.2.1.2 | $x^{2} + 74$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 37.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 37.3.2.3 | $x^{3} - 148$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.2.3 | $x^{3} - 148$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.8.0.1 | $x^{8} - x + 18$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |